Skip to main content

Unterschenkel-Muskelatrophie bei Arthrose des oberen Sprunggelenks und deren Rehabilitation nach Implantation einer Sprunggelenksprothese

Lower leg muscle atrophy in ankle osteoarthritis and its rehabilitation after implantation of a total ankle arthroplasty

Abstract

The aim of this orthopaedic-biomechanical study was to evaluate lower leg muscle function in ankle osteoarthritis (OA) patients and muscle rehabilitation after the implantation of a total ankle replacement (TAR).

Patients with a severe unilateral ankle OA were assessed with an orthopaedic and biomechanical examination before and one year after TAR surgery. Visual analogue pain score, American Orthopaedic Foot and Ankle Society (AOFAS) ankle score, ankle range of motion for dorsi- and plantar flexion (ROM DF/PF), and calf circumference difference between affected and contralateral healthy leg were measured. Isometric maximal voluntary torque for ankle dorsiflexion and plantar flexion were measured simultaneously with surface electromyography (EMG; mean frequency and intensity) of the anterior tibial, medial gastrocnemius, soleus, and peroneus longus muscle. Data were compared to a group of age- and gender-matched normal subjects.

The mean calf circumference difference between legs did not significantly decrease from preoperative to one year follow-up. The mean dorsiflexion torque and plantar flexion torque of the affected ankle increased significantly. The atrophic muscles were characterized by a reduction of the mean EMG intensity and mean EMG frequency. In the rehabilitation process, the mean EMG intensity recovered and was not significantly different for all muscles, however, not for EMG frequency, which remained low and unchanged.

This study reports for the first time in the literature the clinical and biomechanical facts of lower leg muscle atrophy in ankle OA as well as the amount of the muscle rehabilitation after a total ankle replacement. Patients with a symptomatic ankle OA achieve better function with a total ankle replacement; however, one year after the operation neuromuscular and biomechanical deficits may still be present.

Zusammenfassung

Das Ziel dieser orthopädisch-biomechanischen Studie war die Evaluation der Muskelfunktion von Patienten mit einer schweren Arthrose des oberen Sprunggelenks (OSG) sowie deren Rehabilitation nach Implantation einer OSG-Prothese.

Patienten mit einer schweren OSG-Arthrose wurden einer orthopädischen und biomechanischen Untersuchung vor und 12 Monate nach Implantation einer OSG-Prothese unterzogen. Dabei wurden der Schmerz-Score, der American Orthopaedic Foot and Ankle Society (AOFAS)-Ankle-Score, der Bewegungsumfang (ROM) des Sprunggelenks und der Unterschenkel-Umfang des betroffenen und des kontralateralen, gesunden Beins gemessen. Die biomechanische Beurteilung bestand aus einer simultanen Messung des maximal-willkürlichen, isometrischen Drehmoments bei Plantarflexion und Dorsalextension des OSG sowie von Oberflächen-Elektromyogrammen (EMG; mittlere Frequenz und Intensität) von vier bilateralen Unterschenkelmuskeln: M. tibialis anterior (TA), M. gastrocnemius medialis (GM), M. soleus (SO) und M. peronaeus longus (PL). Die erhobenen Daten wurden mit einer alters- und geschlechtsangepassten Gruppe von Normalprobanden verglichen.

Die mittlere Differenz des Unterschenkel-Umfangs zwischen den beiden Beinen nahm vom arthrotischen Stadium zur Einjahresnachkontrolle nicht signifikant ab. Das mittlere Drehmoment des betroffenen Sprunggelenks verbessert sich für die Dorsalextension und Plantarflexion. Die atrophische Unterschenkelmuskulatur war im arthrotischen Stadium im Vergleich zu den gesunden Muskeln der kontralateralen Seite durch eine signifikante Reduktion der mittleren EMG-Frequenz und EMG-Intensität gekennzeichnet. Im Rehabilitationsprozess konnte nach einem Jahr zwar eine Erholung der EMG-Intensität aller vier Muskeln nachgewiesen werden, nicht jedoch der mittleren EMG-Frequenz. Letztere blieb auf Niveau des präoperativen arthrotischen Stadiums reduziert.

Diese Studie liefert zum ersten Mal in der Literatur objektive und orthopädisch-biomechanische Daten zur Atrophie der Unterschenkelmuskulatur bei der Arthrose des OSG und deren Rehabilitation nach Implantation einer OSG-Prothese. Patienten mit einer symptomatischen OSG-Arthrose erlangen mit einer OSG-Prothese zwar eine bessere klinische Funktion, ein Jahr nach der Operation können jedoch noch immer muskulär-biomechanische Defizite nachgewiesen werden.

This is a preview of subscription content, access via your institution.

Literatur

  1. Becker R, Berth A, Nehring M, Awiszus F (2004) Neuromuscular quadriceps dysfunction prior to osteoarthritis of the knee. J Orthop Res 22:768–773

    PubMed  Article  Google Scholar 

  2. Benedetti MG, Catani F, Bilotta TW, Marcacci M, Mariani E, Giannini S (2003) Muscle activation pattern and gait biomechanics after total knee replacement. Clin Biomech (Bristol, Avon) 18:871–876

    Article  CAS  Google Scholar 

  3. Berman AT, Bosacco SJ, Israelite C (1991) Evaluation of total knee arthroplasty using isokinetic testing. Clin Orthop Relat Res 106:13

    Google Scholar 

  4. Buckwalter JA, Mankin HJ (1998) Articular cartilage: tissue design and chondrocyte-matrix interactions. AAOS Instr Course Lect 47:477–486

    CAS  Google Scholar 

  5. D'Lima DD, Poole C, Chadha H, Hermida JC, Mahar A, Colwell CW Jr (2001) Quadriceps moment arm and quadriceps forces after total knee arthroplasty. Clin Orthop Relat Res 213:20

    Google Scholar 

  6. Demottaz JD, Mazur JM, Thomas WH, Sledge CB, Simon SR (1979) Clinical study of total ankle replacement with gait analysis. A preliminary report. J Bone Joint Surg Am 61:976–988

    PubMed  CAS  Google Scholar 

  7. Dyrby C, Chou LB, Andriacchi TP, Mann RA (2004) Functional evaluation of the Scandinavian total ankle replacement. Foot Ankle Int 25:377–381

    PubMed  Google Scholar 

  8. Farina D, Arendt-Nielsen L, Graven-Nielsen T (2005) Experimental muscle pain reduces initial motor unit discharge rates during sustained submaximal contractions. J Appl Physiol 98:999–1005

    PubMed  Article  Google Scholar 

  9. Farina D, Macaluso A, Ferguson RA, and De Vito G (2004) Effect of power, pedal rate, and force on average muscle fiber conduction velocity during cycling. J Appl Physiol 97:2035–2041

    PubMed  Article  Google Scholar 

  10. Felson DT (1995) The epidemiology of osteoarthritis: prevalence and risk factors. In: Kuettner KE, Goldberg VM (eds) Rosemont (IL): American Academy of Orthopaedic Surgeons, pp 13–24

  11. Felson DT, Goggins J, Niu J, Zhang Y, Hunter DJ (2004) The effect of body weight on progression of knee osteoarthritis is dependent on alignment. Arthritis Rheum 50:3904–3909

    PubMed  Article  Google Scholar 

  12. Goepfert B, Valderrabano V, Hintermann B, Wirz D (2005) Measurement of the isometric dorsiflexion and plantar flexion force in the ankle joint. Biomed Tech (Berl) 50:282–286

    Article  Google Scholar 

  13. Harding AEB (1929) An investigation into the cause of arthritic muscular atrophy. Lancet 216:433–434

    Google Scholar 

  14. Hermens HJ, Freriks B, Merletti R, Stegeman D, Blok J, Rau G, Disselhorst-Klug C, Haegg G (1999) European recommendations for surface electromyography (SENIAM). CD-Rom. Roessingh Research and Development b.v., Eschede, the Netherlands

  15. Hintermann B, Valderrabano V, Dereymaeker G, Dick W (2004) The HINTEGRA ankle: rationale and short-term results of 122 consecutive ankles. Clin Orthop 424:57–68

    PubMed  Article  Google Scholar 

  16. Hortobagyi T, Garry J, Holbert D, De-Vita P (2004) Aberrations in the control of quadriceps muscle force in patients with knee osteoarthritis. Arthritis Rheum 51:562–569

    PubMed  Article  Google Scholar 

  17. Hortobagyi T, Westerkamp L, Beam S et al (2005) Altered hamstring-quadriceps muscle balance in patients with knee osteoarthritis. Clin Biomech (Bristol, Avon) 20:97–104

    Article  Google Scholar 

  18. Hurley MV, Scott DL, Rees J, Newham DJ (1997) Sensorimotor changes and functional performance in patients with knee osteoarthritis. Ann Rheum Dis 56:641–648

    PubMed  CAS  Article  Google Scholar 

  19. Ishikawa M, Komi PV (2004) Effects of different dropping intensities on fascicle and tendinous tissue behavior during stretch-shortening cycle exercise. J Appl Physiol 96:848–852

    PubMed  Article  Google Scholar 

  20. Karlsson S, Gerdle B (2001) Mean frequency and signal amplitude of the surface EMG of the quadriceps muscles increase with increasing torque–a study using the continuous wavelet transform. J Electromyogr Kinesiol 11:131–140

    PubMed  Article  CAS  Google Scholar 

  21. Karlsson S, Yu J, Akay M (2000) Time-frequency analysis of myoelectric signals during dynamic contractions: a comparative study. IEEE Trans Biomed Eng 47:228–238

    PubMed  Article  CAS  Google Scholar 

  22. Kitaoka HB, Alexander IJ, Adelaar RS, Nunley JA, Myerson MS, Sanders M (1994) Clinical rating systems for the ankle-hindfoot, midfoot, hallux, and lesser toes. Foot Ankle Int 15:349–353

    PubMed  CAS  Google Scholar 

  23. Lau JT, Mahomed NM, Schon LC (2005) Results of an internet survey determining the most frequently used ankle scores by AOFAS members. Foot Ankle Int 26:479–482

    PubMed  Google Scholar 

  24. Lewek MD, Rudolph KS, Snyder-Mackler L (2004) Quadriceps femoris muscle weakness and activation failure in patients with symptomatic knee osteoarthritis. J Orthop Res 22:110–115

    PubMed  Article  Google Scholar 

  25. Machner A, Pap G, Awiszus F (2002) Evaluation of quadriceps strength and voluntary activation after unicompartmental arthroplasty for medial osteoarthritis of the knee. J Orthop Res 20:108–111

    PubMed  Article  Google Scholar 

  26. Masuda K, Masuda T, Sadoyama T, Inaki M, Katsuta S (1999) Changes in surface EMG parameters during static and dynamic fatiguing contractions. J Electromyogr Kinesiol 9:39–46

    PubMed  Article  CAS  Google Scholar 

  27. Michelson JD, Schmidt GR, Mizel MS (2000) Kinematics of a total arthroplasty of the ankle: comparison to normal ankle motion. Foot Ankle Int 21:278–284

    PubMed  CAS  Google Scholar 

  28. Morrey BF, Wiedeman GP Jr (1980) Complications and long-term results of ankle arthrodeses following trauma. J Bone Joint Surg Am 62:777–784

    PubMed  CAS  Google Scholar 

  29. Nakamura T, Suzuki K (1992) Muscular changes in osteoarthritis of the hip and knee. Nippon Seikeigeka Gakkai Zasshi 66:467–475

    PubMed  CAS  Google Scholar 

  30. Pap G, Machner A, Awiszus F (2004) Strength and voluntary activation of the quadriceps femoris muscle at different severities of osteoarthritic knee joint damage. J Orthop Res 22:96–103

    PubMed  Article  Google Scholar 

  31. Reardon K, Galea M, Dennett X, Choong P, Byrne E (2001) Quadriceps muscle wasting persists 5 months after total hip arthroplasty for osteoarthritis of the hip: a pilot study. Intern Med J 31:7–14

    PubMed  Article  CAS  Google Scholar 

  32. Reggiani B, Leardini A, Corazza F, Taylor M (2006) Finite element analysis of a total ankle replacement during the stance phase of gait. J Biomech 39(8):1435–1443

    PubMed  Article  CAS  Google Scholar 

  33. Rolland Y, Lauwers-Cances V, Cournot M et al (2003) Sarcopenia, calf circumference, and physical function of elderly women: a cross-sectional study. J Am Geriatr Soc 51:1120–1124

    PubMed  Article  Google Scholar 

  34. Rossi MD, Hasson S (2004) Lowerlimb force production in individuals after unilateral total knee arthroplasty. Arch Phys Med Rehabil 85:1279–1284

    PubMed  Article  Google Scholar 

  35. Sakakima H, Yoshida Y, Sakae K, Morimoto N (2004) Different frequency treadmill running in immobilization-induced muscle atrophy and ankle joint contracture of rats. Scand J Med Sci Sports 14:186–192

    PubMed  Article  Google Scholar 

  36. Shepstone TN, Tang JE, Dallaire S, Schuenke MD, Staron RS, Phillips SM (2005) Short-term high- vs low-velocity isokinetic lengthening training results in greater hypertrophy of the elbow flexors in young men. J Appl Physiol 98:1768–1776

    PubMed  Article  Google Scholar 

  37. Silva M, Shepherd EF, Jackson WO, Pratt JA, McClung CD, Schmalzried TP (2003) Knee strength after total knee arthroplasty. J Arthroplasty 18:605–611

    PubMed  Article  Google Scholar 

  38. Sirca A, Susec-Michieli M (1980) Selective type II fibre muscular atrophy in patients with osteoarthritis of the hip. J Neurol Sci 44:149–159

    PubMed  Article  CAS  Google Scholar 

  39. Stamatis ED, Cooper PS, Myerson MS (2003) Supramalleolar osteotomy for the treatment of distal tibial angular deformities and arthritis of the ankle joint. Foot Ankle Int 24:754–764

    PubMed  Google Scholar 

  40. Suter E, Herzog W (2000) Does muscle inhibition after knee injury increase the risk of osteoarthritis? Exerc Sport Sci Rev 28:15–18

    PubMed  CAS  Google Scholar 

  41. Valderrabano V, Hintermann B, Dick W (2004) Scandinavian total ankle replacement: a 3.7 year average followup of 65 patients. Clin Orthop Rel Res 424:47–56

    Article  Google Scholar 

  42. Valderrabano V, Hintermann B, Nigg BM, Stefanyshyn D, Stergiou P (2003) Kinematic changes after fusion and total replacement of the ankle. Part 3: Talar movement. Foot Ankle Int 24:897–900

    PubMed  Google Scholar 

  43. Valderrabano V, von Tscharner V, Nigg BM et al (2006) Lower leg muscle atrophy in ankle osteoarthritis. J Orthop Res, accepted for publication

  44. von Tscharner V (2000) Intensity analysis in time-frequency space of surface myoelectric signals by wavelets of specified resolution. J Electromyogr Kinesiol 10:433–445

    PubMed  Article  CAS  Google Scholar 

  45. Zacharova G, Knotkova-Urbancova H, Hnik P, Soukup T (1997) Nociceptive atrophy of the rat soleus muscle induced by bone fracture: a morphometric study. J Appl Physiol 82:552–557

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Valderrabano.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Valderrabano, V., von Tscharner, V., Nigg, B.M. et al. Unterschenkel-Muskelatrophie bei Arthrose des oberen Sprunggelenks und deren Rehabilitation nach Implantation einer Sprunggelenksprothese. Fuss 5, 33 (2007). https://doi.org/10.1007/s10302-006-0242-0

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1007/s10302-006-0242-0

Key words

  • ankle
  • osteoarthritis
  • total ankle replacement
  • muscle
  • atrophy

Schlüsselwörter

  • Sprunggelenk
  • Arthrose
  • Sprunggelenksprothese
  • Muskel
  • Atrophie