Advertisement

Prophylactic effects of Syzygium aromaticum essential oil on developing wistar rats co-exposed to lead and manganese

  • D. E. H. Adli
  • K. Kahloula
  • M. Slimani
  • M. Brahmi
  • M. Benreguieg
Pharmacognosie
  • 110 Downloads

Abstract

The objective of this study is, on the one hand, to evaluate the changes in the oxidative state at the brain level induced by co-exposure to lead (0.2%) and manganese (4.79 g/l) in young wistar rats during the gestation and lactation period, and on the other hand, to test the effectiveness of clove essential oil Syzygium aromaticum (HEC) in relieving the harmful effects of these two metals studied by an intraperitoneal injection of 0.1 ml HEC/kg/day over a period of 21 days. The characterization of this essential oil by gas chromatography coupled with mass spectrometry indicates that the major components are: eugenol (80.83%), acetate eugenyl (10.48%), and β-caryophyllene (7.21%). Chronic co-exposure led to disturbance in antioxidant enzymatic activities (superoxide dismutase, glutathione peroxidase, and catalase) in intoxicated rats compared to control rats. Indeed, the histological study of the cerebral cortex and cerebellum showed very marked lesions translated by degeneration of the nerve cells and activation of the microglia. Moreover, HEC administration restored the activity of the various antioxidant enzymes with a marked improvement in brain tissue architecture in intoxicated rats treated with HEC.

Keywords

Lead Manganese Rat Syzygium aromaticum Brain 

Effets prophylactiques de l’huile essentielle de Syzygium aromaticum chez les rats wistar en développement coexposés au plomb et au manganèse

Résumé

L’objectif de cette étude est d’évaluer les modifications du statut oxydatif au niveau cérébral, induites par la coexposition au plomb (0,2 %) et au manganèse (4,79 g/l) chez des jeunes rats wistar durant la période de gestation et de lactation, et de tester l’efficacité de l’huile essentielle de clou de girofle (HEC), Syzygium aromaticum, pour rétablir ou non les effets néfastes de ces deux métaux, et cela par une injection intrapéritonéale de 0,1 ml d’HEC/kg et par jour durant une période de 21 jours. La caractérisation de cette huile essentielle par chromatographie en phase gazeuse couplée à la spectrométrie de masse indique que les composants majeurs sont : eugénol (80,83 %), acétate d’eugényle (10,48 %) et β-caryophyllène (7,21 %). La coexposition chronique a permis d’observer une perturbation dans les activités enzymatiques antioxydantes (superoxyde-dismutase, glutathion-peroxydase et catalase) chez les rats intoxiqués comparés aux rats témoins. En effet, l’étude histologique au niveau du cortex cérébral et du cervelet a montré des lésions très marquées traduites par une dégénérescence des cellules nerveuses et l’activation des microglies. Par ailleurs, l’administration d’HEC a rétabli l’activité des différentes enzymes antioxydantes avec une nette amélioration de l’architecture tissulaire cérébrale chez les rats intoxiqués et traités par HEC.

Mots clés

Plomb Manganèse Rat Syzygium aromaticum Cerveau 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Loikkanen J, Naarala J, Vähäkangas K, et al (2003) Glutamate increases toxicity of inorganic lead in GT1-7 neurons:partial protection induced by flunarizine. Arch Toxicol 77:66–71CrossRefGoogle Scholar
  2. 2.
    Zwingmann C, Leibfritz D, Hazell A (2003) Role of manganese in hepatic encephalopathy. In: Jones EA, Meijer AJ, Chamuleau RA (eds) Nitrogen metabolism in liver failure. Kluwer Academic Press, Netherlands, pp 251–64CrossRefGoogle Scholar
  3. 3.
    Milatovic D, Zaja-Milatovic S, Gupta RC, et al (2009) Oxidative damage and neurodegeneration in manganese-induced neurotoxicity. Toxicol Appl Pharmacol 240:219–25CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Nihei MK, Guilarte TR (2001) Molecular changes in glutamatergic synapses induced by Pb2+: association with deficits of LTP and spatial learning. Neurotoxicology 22:635–43CrossRefPubMedGoogle Scholar
  5. 5.
    Small E, Calting PM (2000) Les cultures médicinales canadiennes. Presses scientifiques de CNRC. Ottawa (Ontario), Canada, p 281Google Scholar
  6. 6.
    Teixeira B, Marques A, Ramos C, et al (2013) Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Ind Crops Prod 43:587–95CrossRefGoogle Scholar
  7. 7.
    Dashti-R MH, Morshedi A (2009) The effects of Syzygium aromaticum (clove) on learning and memory in mice. Asian J Tradit Med 4:4Google Scholar
  8. 8.
    Kahloula K, Slimani M, Dubois M, et al (2009) D-cycloserine enhances spatial learning performances of rats chronically exposed to lead during the developmental period. Afr J Neurogical Sci 28:67–77Google Scholar
  9. 9.
    Molina RM, Phattanarudee S, Kim J, et al (2011) Ingestion of Mn and Pb by rats during and after pregnancy alters iron metabolism and behavior in offspring. Neurotoxicology 32:413–22CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Halder S, Mehta AK, Kar R, et al (2011) Clove oil reverses learning and memory deficits in scopolamine-treated mice. Planta Med 77:830–4CrossRefPubMedGoogle Scholar
  11. 11.
    Slimani M, Boucher D, Bonnet JJ, et al (1988) Neurochemical and behavioral evidence for a central indirect dopaminergic activity of GK13, a phencyclidine derivate. In EF Domino, JM Kamenka (eds), Sigma and phencyclidine like compounds as molecular probes in biology. Ann-Arbor, EPP Books, pp 511–20Google Scholar
  12. 12.
    Rotruck JT, Pope AL, Ganther HE, et al (1973) Selenium. Science 179:588–90CrossRefPubMedGoogle Scholar
  13. 13.
    Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 21:130–2PubMedGoogle Scholar
  14. 14.
    Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–94CrossRefPubMedGoogle Scholar
  15. 15.
    Jollow DJ, Mitchell JR, Zampaglione N, et al (1973) Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite Pharmacology. 11:151–69Google Scholar
  16. 16.
    Wenqiang Guan, Shufen Li, Ruixiang Yan, et al (2006) Comparison of essential oils of clove buds extracted with supercritical carbon dioxide and other three traditional extraction methods. Nat Prod Res 20:992–8CrossRefPubMedGoogle Scholar
  17. 17.
    Karousou R, Koureas DN, Kokkini S (2005) Essential oil composition is related to the natural habitats: Corido Thymus capitatus and Satureja thymbra in Natura 2000. Phytochemistry 66:2668–73CrossRefPubMedGoogle Scholar
  18. 18.
    Lee S, Najiah M, Wendy W, et al (2009) Chemical composition and antimicrobial activity of the essential oil of Syzygium aromaticum flower bud (clove) against fish systemic bacteria isolated from aquaculture sites. Front Agric China 3:332–6CrossRefGoogle Scholar
  19. 19.
    Crossgrove J, Zheng W (2004) Manganese toxicity upon over exposure. NMR Biomed 17:544–53CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Miele M, Serra PA, Esposito G, et al (2000) Glutamate and catabolites of high-energy phosphates in the striatum and brainstem of young and aged rats subchronically exposed to manganese. Aging (Milano) 12:393–7Google Scholar
  21. 21.
    Fonta C, Negyessy L, Renaud L, et al (2005) Postnatal development of alkaline phosphatase activity correlates with the maturation of neurotransmission in the cerebral cortex. J Comp Neurol 486:179–96CrossRefPubMedGoogle Scholar
  22. 22.
    Antonio MT, Corredor L, Leret ML (2003) Study of the activity of several brain enzymes like markers of the neurotoxicity induced by perinatal exposure to lead and/or cadmium. Toxicol Lett 143:331–40CrossRefPubMedGoogle Scholar
  23. 23.
    Abdel-Moneim AE, Dkhil MA, Al-Quraishy S (2011) The potential role of flaxseed oil on lead acetate-induced kidney injure in adult male albino rats. Afr J Biotechnol 10:1436–51Google Scholar
  24. 24.
    Bhuvaneswari S, Murugesan S, Subha TS, et al (2013) In vitro antioxidant activity of marine red algae. Chondrococcus hornemanni and Spyridia fusiformis J Chem Pharmac Res. 5:82–5Google Scholar
  25. 25.
    Sandhir R, Julka D, Gill KD (1994) Lipoperoxidative damage on lead exposure in rat brain and its implications on membrane bound enzymes. Pharmacol Toxicol 74:66–71CrossRefPubMedGoogle Scholar
  26. 26.
    Venkareddy LK, Muralidhara M (2014) Locomotor deficits and brain oxidative stress induced by lead (Pb) exposure are attenuated by eugenol supplements in prepubertal rats. Movement Disorders 29:841Google Scholar
  27. 27.
    Farina M, Avila DS, da Rocha JB, et al (2012) Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochem Int 62:575–94CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Martinez-Finley EJ, Gavin CE, Aschner M et al (2013) Manganese neurotoxicity and the role of reactive oxygen species. Free Radic Biol Med 62:65–75CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Patrick GW, Anderson WJ, Brophy P (1995) Dendritic alterations of cortical pyramidal neurons in postnatally lead-exposed kittens: a Golgi-Cox study. Dev Neurosci 17:219–29CrossRefPubMedGoogle Scholar
  30. 30.
    Palmer M, Bjorklund H, Taylor D, et al (2003) Chronic lead exposure of the developing brain. Neurotoxicology 5:149–66Google Scholar
  31. 31.
    Kumar V, Kalit J, Misra UK, et al (2014) A study of dose response and organ susceptibility of copper toxicity in a rat model. J Trace Elem Med Biol 29:269–74CrossRefPubMedGoogle Scholar
  32. 32.
    Finkelstein Y, Milatovic D, Aschner M (2007) La modulation des systèmes cholinergiques de manganèse. Neurotoxicology 28:1003–14CrossRefPubMedGoogle Scholar
  33. 33.
    Amany MM, Shehab AA (2015) The effect of manganese on the olfactory bulb of adult male albino rat and the role of meloxicam: a histological and immunohisto-chemical study. J Microsc Ultrastructure 3:8–18CrossRefGoogle Scholar
  34. 34.
    Marreilha dos Santos AP, Lucas RL, Andrade V, et al (2012) Protective effects of ebselen (Ebs) and para-aminosalicylic acid (PAS) against manganese (Mn)-induced neurotoxicity. Toxicol Appl Pharmacol 258:394–402CrossRefGoogle Scholar
  35. 35.
    Yamada M, Ohno S, Okayasu Y, et al (1986) Chronic manganese poisoning:a neuropathological study with determination of manganese distribution in the brain. Acta Neuropathol 70:273–8CrossRefPubMedGoogle Scholar
  36. 36.
    Finkelstein Y, Morri E, Markowitz B, et al (1998) Low-level lead-induced neurotoxicity in children: an update on central nervous system effects. Brain Res Rev 27:168–76CrossRefPubMedGoogle Scholar
  37. 37.
    Goetz P, Le Jeune R (2010). Syzygium aromaticum (L.) Merr. & Perry (Myrtaceae) Giroflier Phytotherapie. 8:37–43Google Scholar
  38. 38.
    Nassar MI, Gaara A, El-Ghorab AH (2007) Chemical constituents of clove (Syzygium aromaticum, Fam. Myrtaceae) and their antioxidant activity. Rev Latinoamer Quím 35/3Google Scholar
  39. 39.
    Kassab RB, Bauomy AA (2014) The neuroprotective efficency of the aqueous extract of clove (Syzygium aromaticum) in aluniniuminduced neurotoxicity. Int J Pharmacy Pharm Sci 6:503–8Google Scholar
  40. 40.
    Shyamala MP, Venukumar MR, Latha MS (2003) Antioxidant potential of the Syzygium aromaticum (Gaertn.) Linn. (cloves) in rats fed with high fat diet Indian J Pharmacol. 35:99–103Google Scholar
  41. 41.
    Ravi K, Ramachandran B, Subramanian S (2004) Effect of eugenia jambolana seed kernel on antioxidant defense system in streptozotocin-induced diabetes in rats. Life Sci 75:2717–31CrossRefPubMedGoogle Scholar
  42. 42.
    Tasleem A, Tijjani-Salihu SF, Indusmitha R, et al (2012) Aqueous extract of dried flower buds of Syzygium aromaticum inhibits inflammation and oxidative stress. J Basic Clin Pharm 3:323–7CrossRefGoogle Scholar
  43. 43.
    Anbu S, Anuradha CV (2012) Protective effect of eugenol against alcohol-induced biochemical changes in rats. Int J Res Biotechnol Biochem 2:13–8Google Scholar
  44. 44.
    Singh V, Panwar R (2014) In vivo antioxidative and neuroprotective effect of 4-Allyl-2-methoxyphenol against chlorpyrifos-induced neurotoxicity in rat brain. Mol Cell Biochem 388:61–74CrossRefPubMedGoogle Scholar

Copyright information

© Lavoisier 2017

Authors and Affiliations

  • D. E. H. Adli
    • 1
  • K. Kahloula
    • 1
  • M. Slimani
    • 1
  • M. Brahmi
    • 1
  • M. Benreguieg
    • 1
  1. 1.Laboratory of biotoxicology, pharmacognosy and biological recovery of plants, Department of biology, faculty of sciencesUniversity of Dr Moulay TaherSaidaAlgeria

Personalised recommendations