Skip to main content

Catharanthus roseus plant extracts (cultivated in vitro and ex vitro) protect Wistar rats against chemically induced liver carcinogenesis

Extraits de Catharanthus roseus (cultivé in vitro et ex vitro) protecteur du foie contre la carcinogenèse chimiquement induite chez le rat Wistar

Abstract

The plant extracts of Catharanthus roseus L. (G). Don has been used in alternate medicine for years, but the curing mechanism of these extracts is still not scientifically elucidated. The purpose of this study was to examine the effect of in vitro and ex vitro cultivated plant extracts in protecting the model rat against diethyl nitrosamine (DEN) induced hepatocarcinogenesis. Leaf (field and in vitro cultivated) and callus extract were administered to rats that were divided into 6 groups (G1–G6) of 6 each. The animals in each group except G1 were injected with a single dose of DEN (200 mg/kg body weight) to initiate hepatocarcinoma. Six different treatments were created; T1 (normal control), T2 (induced control); and the treated groups, T3 to T6, which received field grown or in vitro raised plant extract at various doses (300 mg/kg/day and 100 mg/kg/day). The treatments were continued for eight weeks. Biochemical variables like glutathione (GSH), glutathione S-transferase (GST), alkaline phosphatase (ALP), aspartate aminotransferase (AST), and comparative hematology and histopathological differences were investigated. The alkaloid levels of extracts were also quantified. In carcinogenic animals, the GSH (12.80 μg/g), GST (0.38 μmol/min/mg protein), ALP (19.88 IU/L), and AST (43.61 IU/L) levels were high compared to normal. The in vitro harvested leaf extract at 100 mg/kg was the most effective treatment that reduced the levels markedly. Histological analysis confirmed the anticarcinogenic protective role of the plant extracts as treated animals showed recovery in micro fatty changes, and had reduced dilated sinusoids and localized focal degeneration. High pressure liquid chromatography (HPLC) quantified maximum accumulation of vinblastine in in vitro developed leaf extract (13.25 μg/g) compared to field grown leaf (10.72 μg/g). Vincristine content was also high (3.27 μg/g) in in vitro cultivated leaf extract. This extra accumulation of phytocompounds in extracts may be responsible for recovery from DEN caused carcinogenic damages. The protocol has advantages as preparation of extracts is easy compared to pure alkaloids, which often have toxic side effects.

Résumé

Les extraits de Catharanthus roseus L. (G). Don sont utilisés depuis des années en médecine alternative, mais leur mécanisme de guérison n’est toujours pas élucidé scientifiquement. L’objectif de cette étude était d’examiner l’effet des extraits cultivés in vitro et ex vitro sur la protection contre la carcinogenèse du foie induite par la diéthylnitrosamine (DEN) chez le rat modèle. La feuille (cultivée sur le terrain et in vitro) et l’extrait de callus ont été administrés à des rats qui ont été répartis en six groupes de six (de G1 à G6). À l’exception du groupe G1, les animaux de chaque groupe ont reçu une dose unique de DEN (200 mg/kg de poids corporel) pour amorcer le carcinome du foie. Six traitements différents ont été créés : T1 (témoin normal), T2 (témoin avec induction) et les groupes traités, T3 à T6, qui ont reçu de l’extrait cultivé sur le terrain ou in vitro selon différentes doses (300 et 100 mg/kg par jour). Les traitements ont été poursuivis pendant huit semaines. Des variables biochimiques, comme le glutathion (GSH), la glutathion- S-transférase (GST), la phosphatase alcaline (ALP), l’aspartate aminotransférase (AST), ainsi que les différences hématologiques et histopathologiques comparatives ont été étudiés. Les concentrations d’alcaloïdes dans les extraits ont également été quantifiées. Chez les animaux développant un cancer, les concentrations de GSH (12,80 μg/g), de GST (0,38 μmol/min par milligramme de protéine), d’ALP (19,88 IU/l) et d’AST (43,61 IU/l) étaient élevées par rapport à la normale. L’extrait de feuille cultivée in vitro à raison de 100 mg/kg était le traitement le plus efficace et a entraîné une diminution considérable des concentrations. L’analyse histologique a confirmé le rôle protecteur anticarcinogène : en effet, les animaux traités ont présenté un rétablissement par rapport aux microchangements subis par les acides gras, une diminution du nombre de sinusoïdes dilatées et une dégénérescence focale localisée. L’accumulation maximale de vinblastine dans l’extrait de feuille cultivée in vitro (13,25 μg/ g) par rapport à une feuille cultivée sur le terrain (10,72 μg/g) a été calculée par chromatographie en phase liquide sous haute pression (CLHP). La teneur en vincristine était également élevée (3,27 μg/g) dans l’extrait de feuille cultivée in vitro. Cette accumulation supplémentaire de phytocomposés dans les extraits peut être responsable du rétablissement suite à des dommages carcinogènes provoqués par la DEN. Le protocole présente des avantages, puisque la préparation des extraits est simple par comparaison avec les alcaloïdes purs, qui présentent souvent des effets secondaires toxiques.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Gruddy SM (1991) Recent nutrition research, implications for foods of the future. Ann Med 23:187–93

    Article  Google Scholar 

  2. 2.

    Klug WS, Cummings MR (2004) Concepts of genetics. Pearson Education Pvt. Ltd., Singapore, p 693

    Google Scholar 

  3. 3.

    Carona R, Dogilitti E, D’Errica M, et al (2001) Risk factor for basal cell carcinoma in a Mediterranean population: role of recreational sum exposure early in life. Arm Dermatol 137:1162–8

    Google Scholar 

  4. 4.

    Suffness M, Douros J (1982) Current status of the NCI plant and animal product program. J Nat Prod 45:1–14

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Anonymous (1996) The wealth of India: a dictionary of Indian raw materials and industrial products, Vol VIII. Council of Scientific and Industrial Research, New Delhi, pp 303–5

    Google Scholar 

  6. 6.

    Singh SN, Vats P, Suri S, et al (2001) Effect of an antidiabetic extract of Catharanthus roseus on enzymic activities in streptozotocin induced diabetic rats. J Ethnopharmacol 76:69–77

    Article  Google Scholar 

  7. 7.

    Van der Heijden R, Jacobs DT, Snoeijer W, et al (2004) The Catharanthus alkaloids: pharmacognosy and biochemistry. Curr Med Chem 11:607–28

    Article  Google Scholar 

  8. 8.

    Mukherjee AK, Basu S, Sarkar N, et al (2001) Advances in cancer therapy with plant based natural products. Curr Med Chem 8:1467–86

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Riga M, Psarommatis I, Korres S, et al (2007) Neurotoxicity of vincristine on the medial olivocochlear bundle. Int J Pediatr Otorhinolaryngol 71:63–9

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Nammi S, Boini MK, Lodagala SD, et al (2003) The juice of fresh leaves of Catharanthus roseus Linn. reduces blood glucose in normal and alloxan diabetic rabbits. BMC Complement Altern Med 3:4

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Satyanarayana S, Sarma GS, Ramesh AS, et al (2003) Evaluation of herbal preparations for hypoglycemic activity in normal and diabetic rabbits. Pharmaceutical Biol 41:466–72

    Article  Google Scholar 

  12. 12.

    Kuboyama T, Yokoshima S, Tokuyama H, et al (2004) Stereocontrolled total synthesis of (+) vincristine. PNAS 101:11966–70

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–97

    CAS  Article  Google Scholar 

  14. 14.

    Miura Y, Hirata K, Kurano N, et al (1988) Formation of vinblastine in multiple shoot culture of Catharanthus roseus. Planta Med 54:18–20

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Junaid A, Mujib A, Sharma MP (2010) Variations in vinblastine production at different stages of somatic embryogenesis, embryo and field grown plantlets of Catharanthus roseus L. (G) Don, as revealed by HPLC. In Vitro Cell Develop Biol Plant 46:348–53

    Article  Google Scholar 

  16. 16.

    Ghai CL (1984) A text book of practical physiology. Vikash Publication House Pvt. Ltd. (Vani educational book), New Delhi, pp 88–111

    Google Scholar 

  17. 17.

    Habig HW, Jakoby WB (1981) Assay of differentiation of glutathione S-transferases. Meth Enzymol 77:398–405

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophysics 82:70–7

    CAS  Article  Google Scholar 

  19. 19.

    Chu I, Bodnar JA, White EL, et al (1996) Quantification of vincristine and vinblastine in Catharanthus roseus plants by capillary zone electrophoresis. J Chromatogr 755:281–8

    CAS  Article  Google Scholar 

  20. 20.

    Iddamaldeniya SS, Wickramashinghe N, Thabrew I, et al (2003) Protection against diethylnitrosoamine-induced hepatocarcinogenesis by an indigenous medicine comprised of Nigella sativa, Hemedesmus indicus and Smilax glabra: a preliminary study. J Carcinog 2:6

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Don G (1999) Catharanthus roseus. In: Ross IA (ed) Medicinal plants of the world. Humana Press, Totowa, NJ, pp 109–18

    Google Scholar 

  22. 22.

    Samaranayake MDP, Wickramasinghe SMDN, Angunawela P, et al (2004) Inhibition of chemically induced liver carcinogenesis in Wistar rats by garlic (Allium sativum). Phytother Res 14:1–3

    Google Scholar 

  23. 23.

    Moreno PRH, Van der Heijden R, Verpoorte R (1995) Cell and tissue cultures of Catharanthus roseus; a literature survey II. Updating from 1988–1993. Plant Cell Tissue Org Cult 42:1–25

    Article  Google Scholar 

  24. 24.

    Rocha LK, Oliveira AJB, Mangolin CA, et al (2005) Effect of different culture medium components on production of alkaloids in callus tissues of Cereus peruvianus (Cactaceae). Acta Sci Biol Sci 27:37–41

    Google Scholar 

  25. 25.

    Nasim SA, Dhir B, Rashmi K, et al (2010) Alliin production in various tissues and organs of Allium sativum grown under normal and sulphur-supplemented in vitro conditions. Plant Cell Tissue Org Cult 101:59–63

    CAS  Article  Google Scholar 

  26. 26.

    Bhat MA, Ahmad S, Junaid A, et al (2008) Salinity stress enhanced production of solasodine in Solanum nigrum L. Chem Pharm Bull 56:17–21

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Thornalley PJ, McLellan AC, Lo TW, et al (1996) Negative association between reduced glutathione concentration and diabetic complications. Med Sci 91:575–82

    CAS  Google Scholar 

  28. 28.

    Lu SC (1999) Regulation of hepatic glutathione synthesis: current concepts and controversies. FASEB J 13:1169–83

    CAS  PubMed  Google Scholar 

  29. 29.

    Ogiso T, Tatematsu M, Tamano S, et al (1985) Comparison of dose dependent effects of chemical carcinogens on induction of glutathione S-transferase placental form positive foci in a short term assay and of hepatocellular carcinomas in a long-term assay. Toxicol Pathol 13:257–65

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Chauhan SS, Agarwal S, Mathur R, et al (1979) Phosphatase activity in testis and prostate of rats treated with embelin and Vinca rosea extract. Experientia 35:1183–5

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Salomi NJ, Nair SC, Jayawardhanan KK, et al (1992) Antitumor principles from Nigella sativa seeds. Cancer Lett 63:41–6

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Kumara SS, Huat BT (2001) Extraction, isolation and characterisation of antitumour principle, alpha-hedarin, from seeds of Nigella sativa. Planta Med 67:29–32

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Mujib.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mujib, A., Gupta, D. & Tonk, D. Catharanthus roseus plant extracts (cultivated in vitro and ex vitro) protect Wistar rats against chemically induced liver carcinogenesis. Phytothérapie (2017). https://doi.org/10.1007/s10298-017-1127-y

Download citation

Keywords

  • Alkaline phosphatase
  • DEN induced hepatocarcinogenesis
  • HPLC
  • Model rat
  • Glutathione S-transferase
  • Callus
  • Vincristine
  • Vinblastine

Mots clés

  • Phosphatase alcaline
  • Carcinogenèse du foie induite par la DEN
  • CLHP
  • Rat modèle
  • Glutathion-S-transférase
  • Callus
  • Vincristine
  • Vinblastine