Skip to main content
Log in

Résistance aux antibiotiques et mécanismes d’action des huiles essentielles contre les bactéries

Resistance to antibiotics and mechanisms of action of essential oils against bacteria

  • Pharmacologie
  • Published:
Phytothérapie

Résumé

L’augmentation de la résistance des bactéries aux antibiotiques est un problème mondial sérieux qui a orienté la recherche pour l’identification de nouvelles biomolécules avec une large activité antibactérienne. Les plantes et leurs dérivés, tels que les huiles essentielles (HE), sont souvent utilisés dans la médecine populaire. Dans la nature, les HE jouent un rôle important dans la protection des plantes. Elles contiennent une grande variété de métabolites secondaires capables d’inhiber ou de ralentir la croissance des bactéries. Les HE et leurs constituants ont des mécanismes d’action variés et très ciblés, touchant en particulier la membrane cellulaire et le cytoplasme, et dans certains cas, changeant complètement la morphologie cellulaire, voire l’expression des gènes. Dans cette brève revue, nous décrivons les mécanismes de résistance des bactéries aux antibiotiques et les modalités d’action antibactérienne des HE.

Abstract

The increasing resistance of bacteria to antibiotics is a serious worldwide problem which prompts researches to identify new biomolecules with a wide antibacterial activity. Plants and their derivatives, such as essential oils (EOs), are often used in folk medicine. In nature, EOs play an important role in the protection of plants. They contain a wide variety of secondary metabolites that are capable of inhibiting or slowing the growth of bacteria. EOs and their components perform a variety of mechanisms targeting different pathways, in particular on the cell membrane and the cytoplasm, and in some cases, completely modifying cell morphology and gene expression. In this brief review, we describe bacterial resistance mechanisms and the mechanisms of action of EOs against pathogenic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Goossens H, Ferech M, Vander Stichele R, et al (2005) Outpatient antibiotic use in Europe and association with resistance: a cross-national database study Lancet 365:579–87

    Article  PubMed  Google Scholar 

  2. Chaudhary AS (2016) A review of global initiatives to fight antibiotic resistance and recent antibiotics’ discovery. Acta Pharm Sin B 6:552–6

    Article  PubMed  PubMed Central  Google Scholar 

  3. Talbaoui A, Jamaly N, Aneb M (2012) Chemical composition and antibacterial activity of essential oils from six Moroccan plants. J Med Plants Res 6:4593–600

    Article  CAS  Google Scholar 

  4. Bouyahya A, El Moussaoui N, Abrini J, et al (2016) Determination of phenolic contents, antioxidant and antibacterial activities of strawberry tree (Arbutus unedo L.) leaf extracts. Br Biotechnol J 14:1–10

    Article  Google Scholar 

  5. Bouyahya A, Abrini J, Elbaobou A, et al (2016) Determination of phenol content and antibacterial activity of five medicinal plants ethanolic extracts from North-West of Morocco. J Plant Pathol Microbiol 7:107–10

    Article  Google Scholar 

  6. Aneb M, Talbaoui A, Bouyahya A, et al (2016) In vitro cytotoxic effects and antibacterial activity of Moroccan medicinal plants Aristolochia longa and Lavandula multifida. Eur J Med Plants 16:1–13

    Article  Google Scholar 

  7. Et-Touys A, Fellah H, Mniouil M, et al (2016) Screening of antioxidant, antibacterial and antileishmanial activities of Salvia officinalis L. extracts from Morocco. Br Microbiol Res J 16:1–10

    Article  Google Scholar 

  8. Bouyahya A, Abrini J, Khay EO, et al (2016) In vitro antibacterial of organic extracts from North-West Moroccan medicinal plant Myrtus communis (L.). Biotechnol J Int 16:1–9

    Google Scholar 

  9. Khay EO, Bouyahya A, El Issaoui K, et al (2016). Study of synergy between Mentha pulegium essential oil, honey and bacteriocin-like inhibitory substance E204 against Listeria monocytogenes CECT 4032 and Escherichia coli K12. Int J Curr Res Biosci Plant Biol 3:29–35

    Article  Google Scholar 

  10. Dung NT, Kim JM, Kang SC (2008) Chemical composition, antimicrobial and antioxidant activities of the essential oil and the ethanol extract of Cleistocalyx operculatus (Roxb.) Merr and Perry buds. Food Chem Toxicol 46:3632–39

    Article  CAS  PubMed  Google Scholar 

  11. Griffin SG, Wyllie SG, Markham JL (1999) The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour Fragr J 14:322–32

    Article  CAS  Google Scholar 

  12. Levy SB (1992) Antibiotic resistance, chapter in book: The antibiotic paradox. How miracle drugs are destroying the miracle. Plenum Press, New York, pp 67–103

    Google Scholar 

  13. Turner M (2011) German Escherichia coli outbreak caused by previously unknown strain. Nature. doi: 10.1038/news.2011.345

    Google Scholar 

  14. Finland M (1979) Emergence of antibiotic resistance in hospitals 1935–1975. Rev Infect Dis 1:4–22

    Article  CAS  PubMed  Google Scholar 

  15. Bouyahya A, Abrini J, Bakri Y, et al (2016) Les huiles essentielles comme agents anticancéreux: actualité sur le mode d’action. Phytothérapie [in press]

    Google Scholar 

  16. Bouyahya A, Jamal A, Edaoudi F, et al (2016) Origanum compactum Benth: a review on phytochemistry and pharmacological properties. Med Aromat Plants 5:252

    Article  Google Scholar 

  17. Bouyahya A, Bensaid M, Bakri Y, et al (2016) Phytochemistry and ethnopharmacology of Ficus carica. Int J Biochem Res Rev 14:1–12

    Article  Google Scholar 

  18. Bakkali F, Averbeck S, Averbeck D, et al (2008) Biological effects of essential oils. Food Chem Toxicol 46:446–75

    Article  CAS  PubMed  Google Scholar 

  19. De Martino L, de Feo V, Nazzaro F (2009) Chemical composition and in vitro antimicrobial and mutagenic activities of seven Lamiaceae essential oils. Molecules 14:4213–230

    Article  PubMed  Google Scholar 

  20. Palumbi SR (2001) Humans as the world’s greatest evolutionary force. Science 293:1786–90

    Article  CAS  PubMed  Google Scholar 

  21. Julian D, Dorothy D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–33

    Article  Google Scholar 

  22. Allen HK, Donato J, Wang HH, et al (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8:251–9

    Article  CAS  PubMed  Google Scholar 

  23. Doyle MP (2006). Antimicrobial resistance: implications for the food system. Compr Rev Food Sci Food Saf 5:71–137

    Article  CAS  Google Scholar 

  24. Springman AC, Lacher DW, Milton GWN, et al (2009) Selection, recombination, and virulence gene diversity among group B streptococcal genotypes. J Bacteriol 191:5419–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Giedraitiene A, Vitkauskiene A, Naginiene R, et al (2011) Antibiotic resistance mechanisms of clinically important bacteria. Medicina 47:137–46

    PubMed  Google Scholar 

  26. Marshall BM, Ochieng DJ, Levy SB (2009) Commensals: unappreciated reservoir of antibiotic resistance. Microbe 4:231–8

    Google Scholar 

  27. Dzidic S, Suskovic J, Kos B (2008) Antibiotic resistance mechanisms in bacteria: biochemical and genetic aspects. Food Technol Biotechnol 46:11–21

    CAS  Google Scholar 

  28. Jacoby GA, Munoz-Price LS (2005) The new beta-lactamases. N Engl J Med 352:380–91

    Article  CAS  PubMed  Google Scholar 

  29. Poole K (2004) Resistance to beta-lactam antibiotics. Cell Mol Life Sci 61:2200–23

    Article  CAS  PubMed  Google Scholar 

  30. Tenover FC (2006) Mechanisms of antimicrobial resistance in bacteria. Am J Med 119:62–70

    Article  Google Scholar 

  31. Jana S, Deb JK (2006) Molecular understanding of aminoglycoside action and resistance. Appl Microbiol Biotechnol 70:140–50

    Article  CAS  PubMed  Google Scholar 

  32. Li XZ, Nikaido H (2009) Efflux-mediated drug resistance in bacteria: an update. Drugs 69:1555–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. White DG, Alekshun MN, McDermott PF (2005) Frontiers in antimicrobial resistance: a tribute to Stuart B Levy. ASM Press, Washington, DC

    Google Scholar 

  34. Hooper DC (1999) Mechanisms of fluoroquinolone resistance. Drug Resist Updat 2:38–55

    Article  CAS  PubMed  Google Scholar 

  35. Adewoye L, Sutherland A, Srikumar R, et al (2002) The mexR repressor of the mexAB-oprM multidrug efflux operon in Pseudomonas aeruginosa: characterization of mutations compromising activity. J Bacteriol 184:4308–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Blazquez J (2003) Hypermutation as a factor contributing to the acquisition of antimicrobial resistance. Clin Infect Dis 37:1201–09

    Article  CAS  PubMed  Google Scholar 

  37. Sommer MOA, Dantas G, Church GM (2009) Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325:1128–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Courvalin P (1994) Transfer of antibiotic resistance genes between Gram-positive and Gram-negative bacteria. Antimicrob Agents Chemother 38:1447–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nordmann P, Poirel L (2002) Emerging carbapenemases in Gram-negative aerobes. Clin and Microbiol Infect 8:321–31

    Article  CAS  Google Scholar 

  40. Liebert CA, Hall RM, Summers AO (1999) Transposon Tn21, flagship of the floating genome. Microbiol Mol Biol Rev 63:507–22

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Holmes AJ, Gillings MR, Nield BS, et al (2003) The gene cassette metagenome is a basic resource for bacterial genome evolution. Environ Microbiol 5:383–94

    Article  CAS  PubMed  Google Scholar 

  42. Santoyo S, Cavero S, Jaime L, et al (2005) Chemical composition and antimicrobial activity of Rosmarinus officinalis L. essential oil obtained via supercritical fluid extraction. J Food Prot 68:790–5

    Article  CAS  PubMed  Google Scholar 

  43. Rauha JP, Remes S, Heinonen M, et al (2000) Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int J Food Microbiol 56:3–12

    Article  CAS  PubMed  Google Scholar 

  44. De Feo, De Simone, Senatore F (2002) Potential allelochemicals from the essential oil of Ruta graveolens. Phytochemistry 61:573–81

    Article  Google Scholar 

  45. Ciccarelli D, Garbari F, Pagni AM (2008) The flower of Myrtus communis (Myrtaceae): secretory structures, unicellular papillae, and their ecological role. Flora morphology, distribution. Funct Ecol Plants 2003:85–93

    Article  Google Scholar 

  46. Zizovic I, Stamenic M, Orlovic A, et al (2007) Supercritical carbon dioxide extraction of essential from plants with secretory ducts mathematica modeling of micro-scale. J Superc Fluids 39:338–46

    Article  CAS  Google Scholar 

  47. Dubey VS, Bhalla R, Luthra R (2003) An overview of the non mevalonate pathway for terpenoid biosynthesis in plants. J Biosci 28:637–46

    Article  CAS  PubMed  Google Scholar 

  48. Bohlmann J, Keeling CI (2008) Terpenoid biomaterials. Plants J 54:656–69

    Article  CAS  Google Scholar 

  49. Kalemba D, Kunicka A (2003) Antibacterial and antifungal properties of essential oils. Curr Med Chem 10:813–29

    Article  CAS  PubMed  Google Scholar 

  50. Nazzaro F, Fratianni F, De Martino L, et al (2013) Effect of essential oils on pathogenic bacteria. Pharmaceuticals 6:1451–74

    Article  PubMed  PubMed Central  Google Scholar 

  51. El Moussaoui N, Sanchez G, Khay E, et al (2013) Antibacterial and antiviral activities of essential oils of Northern Moroccan plants. Br Biotechnol J 3:318–31

    Article  Google Scholar 

  52. Candan F, Unlu M, Tepe B, et al (2003) Antioxidant and antimicrobial activity of the essential oil and methanol extracts of Achillea millefolium subsp. Millefolium Afan. (Asteraceae). J Ethnopharmacol 87:215–20

    Article  CAS  PubMed  Google Scholar 

  53. Juteau F, Masotti V, Bessiere JM, et al (2002) Antibacterial and antioxidant activities of Artemisia annua essential oil. Fitoterapia 73:532–5

    Article  CAS  PubMed  Google Scholar 

  54. Sacchetti G, Maietti S, Muzzoli M, et al (2005) Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem 91:621–32

    Article  CAS  Google Scholar 

  55. Cox SD, Mann CM, Markham JL (2001) Interactions between components of the essential oil of Melaleuca alternifolia. J Appl Microbiol 91:492–9

    Article  CAS  PubMed  Google Scholar 

  56. Messager S, Hammer KA, Carson CF, et al (2005) Assessment of the antibacterial activity of tea tree oil using the European EN 1276 and EN 12054 standard suspension tests. J Hosp Infect 59:113–25

    Article  CAS  PubMed  Google Scholar 

  57. Douhri B, Douhri H, Farah A (2014) Phytochemical analysis and antibacterial activity of essential oil of Lavandula multifidi L. Int J Innov Sci Res 1:116–26

    Google Scholar 

  58. Jamali CA, Kasrati K, Bekkouche K (2013) Phenological changes to the chemical composition and biological activity of the essential oil from Moroccan endemic thyme (Thymus maroccanus Ball). Ind Crop Prod 49:366–72

    Article  CAS  Google Scholar 

  59. Mostafa NM, Eldahshan OA, Nasser A, et al (2015) Chemical composition and antimicrobial activity of flower essential oil of Jacaranda acutifolia Juss. Against food-borne pathogens. Eur J Med Plants 6:62–9

    Google Scholar 

  60. Al-Shuneigat J, Al-Sarayreh S, Al-Qudah M, et al (2015) GC-MS analysis and antibacterial activity of the essential oil isolated from wild Artemisia herba-alba grown in South Jordan. Br J Med Med Res 5:297–302

    Article  Google Scholar 

  61. Barakat H (2014) Composition, antioxidant, antibacterial activities and mode of action of clove (Syzygium aromaticum L.) buds essential oil. Br J Appl Sci Technol 4:1934–51

    Article  CAS  Google Scholar 

  62. Tibyangye J, Okech MA, Nyabayo JM, et al (2015) In vitro antibacterial activity of Ocimum suave essential oils against uropathogens isolated from patients in selected hospitals in Bushenyi District, Uganda. Br Microbiol Res J 8:489–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Derwich E, Benziane Z, Boukir A (2010) Chemical composition and antibacterial activity of the essential oil of Cedrus atlantica. Int J Agric Biol 12:381–5

    CAS  Google Scholar 

  64. Imelouane B, El bachiri A, Ankit M, et al (2009) Physicochemical composition and antimicrobial activity of essential oil of Eastern Moroccan Lavandula dentata. Int J Agric Biol 11:113–8

    CAS  Google Scholar 

  65. Oumzil H, Ghoulami S, Rhajaoui M (2002) Antibacterial and antifungal activity of essential oils of Mentha suaveolens. Phytother Res 16:727–31

    Article  CAS  PubMed  Google Scholar 

  66. Hanbali FE, Akssira M, Ezoubeiri A, et al (2005) Chemical composition and antibacterial activity of essential oil of Pulicaria odora L. J Ethnopharmacol 3:399–401

    Article  Google Scholar 

  67. Satrani B, Ghanmi M, Farah A (2007) Composition chimique et activité antimicrobienne de l’huile essentielle de Cladanthus mixtus. Bull Soc Bordeaux 146:85–96

    Google Scholar 

  68. El Hassany B, El Hanbalia F, Akssiraa M, et al (2004) Germacranolides from Anvillea radiata. Fitoterapia 75:573–6

    Article  PubMed  Google Scholar 

  69. Elmoussaouiti M, Talbaoui A, Gmouh S (2010) Chemical composition and bactericidal evaluation of essential oil of Tetraclinis articulata burl wood from Morocco. J Indian Acad Wood Sci 1:14–18

    Article  Google Scholar 

  70. Delaquis PJ, Stanich K, Girard B, et al (2002) Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int J Food Microbiol 74:101–9

    Article  CAS  PubMed  Google Scholar 

  71. Mourey A, Canillac N (2002) Anti-Listeria monocytogenes activity of essential oils components of conifers. Food Control 13:289–92

    Article  CAS  Google Scholar 

  72. Tiwari BK, Valdramidis VP, O’Donnel CP (2009) Application of natural antimicrobials for food preservation. J Agric Food Chem 57:5987–6000

    Article  CAS  PubMed  Google Scholar 

  73. Bouhdid S, Abrini J, Amensour M, et al (2009) Functional and ultrastructural changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by Origanum compactum essential oil. J Applied Microbiol 106:1558–68

    Article  CAS  Google Scholar 

  74. Bouhdid S, Abrini J, Amensour M, et al (2010) Functional and ultrastructural changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by Cinnamomum verum essential oil. J Applied Microbiol 109:1139–49

    Article  CAS  Google Scholar 

  75. Benchaar C, Calsamiglia S, Chaves AV, et al (2008) A review of plant-derived essential oils in ruminant nutrition and production. Anim Feed Sci Technol 145:209–28

    Article  CAS  Google Scholar 

  76. Heath RJ, Rock CO (2004) Fatty acid biosynthesis as a target for novel antibacterials. Curr Opin Invest Drugs 5:146–53

    CAS  Google Scholar 

  77. Burt SA, Reinders RD (2003) Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7. Lett Appl Microbiol 36:162–7

    Article  CAS  PubMed  Google Scholar 

  78. Di Pasqua R, Betts G, Hoskins N, et al (2007) Membrane toxicity of antimicrobial compounds from essential oils. J Agric Food Chem 55:4863–70

    Article  PubMed  Google Scholar 

  79. Fitzgerald DJ, Stratford M, Gasson MJ, et al (2004) Mode of antimicrobial of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua. J Appl Microbiol 97:104–13

    Article  CAS  PubMed  Google Scholar 

  80. Domadia P, Swarup S, Bhunia A, et al (2007) Inhibition of bacterial cell division protein FtsZ by cinnamaldehyde. Biochem Pharmacol 74:831–40

    Article  CAS  PubMed  Google Scholar 

  81. Turgis M, Han J, Caillet S, et al (2009) Antimicrobial activity of mustard essential oil against Escherichia coli O157:H7 and Salmonella typhi. Food Control 20:1073–79

    Article  CAS  Google Scholar 

  82. Caillet S, Lacroix M (2006) Effect of gamma radiation and oregano essential oil on murein and ATP concentration of Listeria monocytogenes. J Food Prot 69:2961–69

    Article  CAS  PubMed  Google Scholar 

  83. Trosko JE (2016) Evolution of microbial quorum sensing to human global quorum sensing: an insight into how gap junctional intercellular communication might be linked to the global metabolic disease crisis. Biology (Basel) 5:29

    Google Scholar 

  84. Cai Y, Wang R, An MM (2010) Iron-depletion prevents biofilm formation in Pseudomonas aeruginosa through twitching motility and quorum sensing. Braz J Microbiol 41:37–41

    Article  PubMed  PubMed Central  Google Scholar 

  85. Bassler BL (2002) Small talk: cell-to-cell communication in bacteria. Cell 109:421–4

    Article  CAS  PubMed  Google Scholar 

  86. Xu GM (2016) Relationships between the regulatory systems of quorum sensing and multidrug resistance. Front Microbiol 7:958

    PubMed  PubMed Central  Google Scholar 

  87. Luís A, Duarte A, Gominho J, et al (2016) Chemical composition, antioxidant, antibacterial and anti-quorum sensing activities of Eucalyptus globulus and Eucalyptus radiata essential oils. Ind Crop Prod 79:274–82

    Article  Google Scholar 

  88. Myszka K, Schmidt MT, Majcher M (2016) Inhibition of quorum sensing-related biofilm of Pseudomonas fluorescens KM121 by Thymus vulgare essential oil and its major bioactive compounds. Int Biodeterior Biodegradation 114:252–9

    Article  CAS  Google Scholar 

  89. Luciardi MC, Blàzquez MA, Cartagena E (2016) Mandarin essential oils inhibit quorum sensing and virulence factors of Pseudomonas aeruginosa LWT — Food Sci Technol 68:373–80

    CAS  Google Scholar 

  90. Zhou L, Zheng H, Tang Y, et al (2013) Eugenol inhibits quorum sensing at sub-inhibitory concentrations. Biotechnol Lett 35:631–7

    Article  CAS  PubMed  Google Scholar 

  91. Gill AO, Holley RA (2006) Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. Int J Food Microbiol 108:1–9

    Article  CAS  PubMed  Google Scholar 

  92. Ultee A, Kets EPW, Alberda M, et al (2000) Adaptation of the food-borne pathogen Bacillus cereusto carvacrol. Arch Microbiol 174:233–8

    Article  CAS  PubMed  Google Scholar 

  93. Ultee A, Smid EJ (2001) Influence of carvacrol on growth and toxin production by Bacillus cereus. Int J Food Microbiol 64:373–8

    Article  CAS  PubMed  Google Scholar 

  94. Cox SD, Gustafson JE, Mann CM, et al (1998) Tea tree oil causes K+ leakage and inhibits respiration in Escherichia coli. Lett Appl Microbiol 26:355–8

    Article  CAS  PubMed  Google Scholar 

  95. Lambert RJW, Skandamis PN, Coote PJ (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 91:453–62

    Article  CAS  PubMed  Google Scholar 

  96. Di Pasqua R, Mamone G, Ferranti, P et al (2010) Changes in the proteome of Salmonella enteric serovar Thompson as stress adaptation to sublethal concentrations of thymol. Proteomics 10:1040–9

    PubMed  Google Scholar 

  97. Niu S, Afre S, Gilbert ES (2006) Sub-inhibitory concentrations of cinnamaldehyde interfere with quorum sensing. Lett Appl Microbiol 43:489–94

    Article  CAS  PubMed  Google Scholar 

  98. Faleiro ML (2011) The mode of antibacterial action of essential oils. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. Ed Brown Walker Press, Boca Raton, FL, USA, pp 1143–56

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bouyahya.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouyahya, A., Bakri, Y., Et-Touys, A. et al. Résistance aux antibiotiques et mécanismes d’action des huiles essentielles contre les bactéries. Phytothérapie (2017). https://doi.org/10.1007/s10298-017-1118-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10298-017-1118-z

Mots clés

Keywords

Navigation