Advertisement

Résistance aux antibiotiques et mécanismes d’action des huiles essentielles contre les bactéries

  • A. BouyahyaEmail author
  • Y. Bakri
  • A. Et-Touys
  • A. Talbaoui
  • A. Khouchlaa
  • S. Charfi
  • J. Abrini
  • N. Dakka
Pharmacologie

Résumé

L’augmentation de la résistance des bactéries aux antibiotiques est un problème mondial sérieux qui a orienté la recherche pour l’identification de nouvelles biomolécules avec une large activité antibactérienne. Les plantes et leurs dérivés, tels que les huiles essentielles (HE), sont souvent utilisés dans la médecine populaire. Dans la nature, les HE jouent un rôle important dans la protection des plantes. Elles contiennent une grande variété de métabolites secondaires capables d’inhiber ou de ralentir la croissance des bactéries. Les HE et leurs constituants ont des mécanismes d’action variés et très ciblés, touchant en particulier la membrane cellulaire et le cytoplasme, et dans certains cas, changeant complètement la morphologie cellulaire, voire l’expression des gènes. Dans cette brève revue, nous décrivons les mécanismes de résistance des bactéries aux antibiotiques et les modalités d’action antibactérienne des HE.

Mots clés

Bactérie Antibiotique Résistance Huile essentielle Activité antibactérienne 

Resistance to antibiotics and mechanisms of action of essential oils against bacteria

Abstract

The increasing resistance of bacteria to antibiotics is a serious worldwide problem which prompts researches to identify new biomolecules with a wide antibacterial activity. Plants and their derivatives, such as essential oils (EOs), are often used in folk medicine. In nature, EOs play an important role in the protection of plants. They contain a wide variety of secondary metabolites that are capable of inhibiting or slowing the growth of bacteria. EOs and their components perform a variety of mechanisms targeting different pathways, in particular on the cell membrane and the cytoplasm, and in some cases, completely modifying cell morphology and gene expression. In this brief review, we describe bacterial resistance mechanisms and the mechanisms of action of EOs against pathogenic bacteria.

Keywords

Bacteria Antibiotic Resistance Essential oil Antibacterial activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Goossens H, Ferech M, Vander Stichele R, et al (2005) Outpatient antibiotic use in Europe and association with resistance: a cross-national database study Lancet 365:579–87CrossRefPubMedGoogle Scholar
  2. 2.
    Chaudhary AS (2016) A review of global initiatives to fight antibiotic resistance and recent antibiotics’ discovery. Acta Pharm Sin B 6:552–6CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Talbaoui A, Jamaly N, Aneb M (2012) Chemical composition and antibacterial activity of essential oils from six Moroccan plants. J Med Plants Res 6:4593–600CrossRefGoogle Scholar
  4. 4.
    Bouyahya A, El Moussaoui N, Abrini J, et al (2016) Determination of phenolic contents, antioxidant and antibacterial activities of strawberry tree (Arbutus unedo L.) leaf extracts. Br Biotechnol J 14:1–10CrossRefGoogle Scholar
  5. 5.
    Bouyahya A, Abrini J, Elbaobou A, et al (2016) Determination of phenol content and antibacterial activity of five medicinal plants ethanolic extracts from North-West of Morocco. J Plant Pathol Microbiol 7:107–10CrossRefGoogle Scholar
  6. 6.
    Aneb M, Talbaoui A, Bouyahya A, et al (2016) In vitro cytotoxic effects and antibacterial activity of Moroccan medicinal plants Aristolochia longa and Lavandula multifida. Eur J Med Plants 16:1–13CrossRefGoogle Scholar
  7. 7.
    Et-Touys A, Fellah H, Mniouil M, et al (2016) Screening of antioxidant, antibacterial and antileishmanial activities of Salvia officinalis L. extracts from Morocco. Br Microbiol Res J 16:1–10CrossRefGoogle Scholar
  8. 8.
    Bouyahya A, Abrini J, Khay EO, et al (2016) In vitro antibacterial of organic extracts from North-West Moroccan medicinal plant Myrtus communis (L.). Biotechnol J Int 16:1–9Google Scholar
  9. 9.
    Khay EO, Bouyahya A, El Issaoui K, et al (2016). Study of synergy between Mentha pulegium essential oil, honey and bacteriocin-like inhibitory substance E204 against Listeria monocytogenes CECT 4032 and Escherichia coli K12. Int J Curr Res Biosci Plant Biol 3:29–35CrossRefGoogle Scholar
  10. 10.
    Dung NT, Kim JM, Kang SC (2008) Chemical composition, antimicrobial and antioxidant activities of the essential oil and the ethanol extract of Cleistocalyx operculatus (Roxb.) Merr and Perry buds. Food Chem Toxicol 46:3632–39CrossRefPubMedGoogle Scholar
  11. 11.
    Griffin SG, Wyllie SG, Markham JL (1999) The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour Fragr J 14:322–32CrossRefGoogle Scholar
  12. 12.
    Levy SB (1992) Antibiotic resistance, chapter in book: The antibiotic paradox. How miracle drugs are destroying the miracle. Plenum Press, New York, pp 67–103Google Scholar
  13. 13.
    Turner M (2011) German Escherichia coli outbreak caused by previously unknown strain. Nature. doi: 10.1038/news.2011.345Google Scholar
  14. 14.
    Finland M (1979) Emergence of antibiotic resistance in hospitals 1935–1975. Rev Infect Dis 1:4–22CrossRefPubMedGoogle Scholar
  15. 15.
    Bouyahya A, Abrini J, Bakri Y, et al (2016) Les huiles essentielles comme agents anticancéreux: actualité sur le mode d’action. Phytothérapie [in press]Google Scholar
  16. 16.
    Bouyahya A, Jamal A, Edaoudi F, et al (2016) Origanum compactum Benth: a review on phytochemistry and pharmacological properties. Med Aromat Plants 5:252CrossRefGoogle Scholar
  17. 17.
    Bouyahya A, Bensaid M, Bakri Y, et al (2016) Phytochemistry and ethnopharmacology of Ficus carica. Int J Biochem Res Rev 14:1–12CrossRefGoogle Scholar
  18. 18.
    Bakkali F, Averbeck S, Averbeck D, et al (2008) Biological effects of essential oils. Food Chem Toxicol 46:446–75CrossRefPubMedGoogle Scholar
  19. 19.
    De Martino L, de Feo V, Nazzaro F (2009) Chemical composition and in vitro antimicrobial and mutagenic activities of seven Lamiaceae essential oils. Molecules 14:4213–230CrossRefPubMedGoogle Scholar
  20. 20.
    Palumbi SR (2001) Humans as the world’s greatest evolutionary force. Science 293:1786–90CrossRefPubMedGoogle Scholar
  21. 21.
    Julian D, Dorothy D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–33CrossRefGoogle Scholar
  22. 22.
    Allen HK, Donato J, Wang HH, et al (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8:251–9CrossRefPubMedGoogle Scholar
  23. 23.
    Doyle MP (2006). Antimicrobial resistance: implications for the food system. Compr Rev Food Sci Food Saf 5:71–137CrossRefGoogle Scholar
  24. 24.
    Springman AC, Lacher DW, Milton GWN, et al (2009) Selection, recombination, and virulence gene diversity among group B streptococcal genotypes. J Bacteriol 191:5419–27CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Giedraitiene A, Vitkauskiene A, Naginiene R, et al (2011) Antibiotic resistance mechanisms of clinically important bacteria. Medicina 47:137–46PubMedGoogle Scholar
  26. 26.
    Marshall BM, Ochieng DJ, Levy SB (2009) Commensals: unappreciated reservoir of antibiotic resistance. Microbe 4:231–8Google Scholar
  27. 27.
    Dzidic S, Suskovic J, Kos B (2008) Antibiotic resistance mechanisms in bacteria: biochemical and genetic aspects. Food Technol Biotechnol 46:11–21Google Scholar
  28. 28.
    Jacoby GA, Munoz-Price LS (2005) The new beta-lactamases. N Engl J Med 352:380–91CrossRefPubMedGoogle Scholar
  29. 29.
    Poole K (2004) Resistance to beta-lactam antibiotics. Cell Mol Life Sci 61:2200–23CrossRefPubMedGoogle Scholar
  30. 30.
    Tenover FC (2006) Mechanisms of antimicrobial resistance in bacteria. Am J Med 119:62–70CrossRefGoogle Scholar
  31. 31.
    Jana S, Deb JK (2006) Molecular understanding of aminoglycoside action and resistance. Appl Microbiol Biotechnol 70:140–50CrossRefPubMedGoogle Scholar
  32. 32.
    Li XZ, Nikaido H (2009) Efflux-mediated drug resistance in bacteria: an update. Drugs 69:1555–623CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    White DG, Alekshun MN, McDermott PF (2005) Frontiers in antimicrobial resistance: a tribute to Stuart B Levy. ASM Press, Washington, DCGoogle Scholar
  34. 34.
    Hooper DC (1999) Mechanisms of fluoroquinolone resistance. Drug Resist Updat 2:38–55CrossRefPubMedGoogle Scholar
  35. 35.
    Adewoye L, Sutherland A, Srikumar R, et al (2002) The mexR repressor of the mexAB-oprM multidrug efflux operon in Pseudomonas aeruginosa: characterization of mutations compromising activity. J Bacteriol 184:4308–12CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Blazquez J (2003) Hypermutation as a factor contributing to the acquisition of antimicrobial resistance. Clin Infect Dis 37:1201–09CrossRefPubMedGoogle Scholar
  37. 37.
    Sommer MOA, Dantas G, Church GM (2009) Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325:1128–31CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Courvalin P (1994) Transfer of antibiotic resistance genes between Gram-positive and Gram-negative bacteria. Antimicrob Agents Chemother 38:1447–51CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Nordmann P, Poirel L (2002) Emerging carbapenemases in Gram-negative aerobes. Clin and Microbiol Infect 8:321–31CrossRefGoogle Scholar
  40. 40.
    Liebert CA, Hall RM, Summers AO (1999) Transposon Tn21, flagship of the floating genome. Microbiol Mol Biol Rev 63:507–22PubMedPubMedCentralGoogle Scholar
  41. 41.
    Holmes AJ, Gillings MR, Nield BS, et al (2003) The gene cassette metagenome is a basic resource for bacterial genome evolution. Environ Microbiol 5:383–94CrossRefPubMedGoogle Scholar
  42. 42.
    Santoyo S, Cavero S, Jaime L, et al (2005) Chemical composition and antimicrobial activity of Rosmarinus officinalis L. essential oil obtained via supercritical fluid extraction. J Food Prot 68:790–5CrossRefPubMedGoogle Scholar
  43. 43.
    Rauha JP, Remes S, Heinonen M, et al (2000) Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int J Food Microbiol 56:3–12CrossRefPubMedGoogle Scholar
  44. 44.
    De Feo, De Simone, Senatore F (2002) Potential allelochemicals from the essential oil of Ruta graveolens. Phytochemistry 61:573–81CrossRefGoogle Scholar
  45. 45.
    Ciccarelli D, Garbari F, Pagni AM (2008) The flower of Myrtus communis (Myrtaceae): secretory structures, unicellular papillae, and their ecological role. Flora morphology, distribution. Funct Ecol Plants 2003:85–93CrossRefGoogle Scholar
  46. 46.
    Zizovic I, Stamenic M, Orlovic A, et al (2007) Supercritical carbon dioxide extraction of essential from plants with secretory ducts mathematica modeling of micro-scale. J Superc Fluids 39:338–46CrossRefGoogle Scholar
  47. 47.
    Dubey VS, Bhalla R, Luthra R (2003) An overview of the non mevalonate pathway for terpenoid biosynthesis in plants. J Biosci 28:637–46CrossRefPubMedGoogle Scholar
  48. 48.
    Bohlmann J, Keeling CI (2008) Terpenoid biomaterials. Plants J 54:656–69CrossRefGoogle Scholar
  49. 49.
    Kalemba D, Kunicka A (2003) Antibacterial and antifungal properties of essential oils. Curr Med Chem 10:813–29CrossRefPubMedGoogle Scholar
  50. 50.
    Nazzaro F, Fratianni F, De Martino L, et al (2013) Effect of essential oils on pathogenic bacteria. Pharmaceuticals 6:1451–74CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    El Moussaoui N, Sanchez G, Khay E, et al (2013) Antibacterial and antiviral activities of essential oils of Northern Moroccan plants. Br Biotechnol J 3:318–31CrossRefGoogle Scholar
  52. 52.
    Candan F, Unlu M, Tepe B, et al (2003) Antioxidant and antimicrobial activity of the essential oil and methanol extracts of Achillea millefolium subsp. Millefolium Afan. (Asteraceae). J Ethnopharmacol 87:215–20CrossRefPubMedGoogle Scholar
  53. 53.
    Juteau F, Masotti V, Bessiere JM, et al (2002) Antibacterial and antioxidant activities of Artemisia annua essential oil. Fitoterapia 73:532–5CrossRefPubMedGoogle Scholar
  54. 54.
    Sacchetti G, Maietti S, Muzzoli M, et al (2005) Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem 91:621–32CrossRefGoogle Scholar
  55. 55.
    Cox SD, Mann CM, Markham JL (2001) Interactions between components of the essential oil of Melaleuca alternifolia. J Appl Microbiol 91:492–9CrossRefPubMedGoogle Scholar
  56. 56.
    Messager S, Hammer KA, Carson CF, et al (2005) Assessment of the antibacterial activity of tea tree oil using the European EN 1276 and EN 12054 standard suspension tests. J Hosp Infect 59:113–25CrossRefPubMedGoogle Scholar
  57. 57.
    Douhri B, Douhri H, Farah A (2014) Phytochemical analysis and antibacterial activity of essential oil of Lavandula multifidi L. Int J Innov Sci Res 1:116–26Google Scholar
  58. 58.
    Jamali CA, Kasrati K, Bekkouche K (2013) Phenological changes to the chemical composition and biological activity of the essential oil from Moroccan endemic thyme (Thymus maroccanus Ball). Ind Crop Prod 49:366–72CrossRefGoogle Scholar
  59. 59.
    Mostafa NM, Eldahshan OA, Nasser A, et al (2015) Chemical composition and antimicrobial activity of flower essential oil of Jacaranda acutifolia Juss. Against food-borne pathogens. Eur J Med Plants 6:62–9Google Scholar
  60. 60.
    Al-Shuneigat J, Al-Sarayreh S, Al-Qudah M, et al (2015) GC-MS analysis and antibacterial activity of the essential oil isolated from wild Artemisia herba-alba grown in South Jordan. Br J Med Med Res 5:297–302CrossRefGoogle Scholar
  61. 61.
    Barakat H (2014) Composition, antioxidant, antibacterial activities and mode of action of clove (Syzygium aromaticum L.) buds essential oil. Br J Appl Sci Technol 4:1934–51CrossRefGoogle Scholar
  62. 62.
    Tibyangye J, Okech MA, Nyabayo JM, et al (2015) In vitro antibacterial activity of Ocimum suave essential oils against uropathogens isolated from patients in selected hospitals in Bushenyi District, Uganda. Br Microbiol Res J 8:489–98CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Derwich E, Benziane Z, Boukir A (2010) Chemical composition and antibacterial activity of the essential oil of Cedrus atlantica. Int J Agric Biol 12:381–5Google Scholar
  64. 64.
    Imelouane B, El bachiri A, Ankit M, et al (2009) Physicochemical composition and antimicrobial activity of essential oil of Eastern Moroccan Lavandula dentata. Int J Agric Biol 11:113–8Google Scholar
  65. 65.
    Oumzil H, Ghoulami S, Rhajaoui M (2002) Antibacterial and antifungal activity of essential oils of Mentha suaveolens. Phytother Res 16:727–31CrossRefPubMedGoogle Scholar
  66. 66.
    Hanbali FE, Akssira M, Ezoubeiri A, et al (2005) Chemical composition and antibacterial activity of essential oil of Pulicaria odora L. J Ethnopharmacol 3:399–401CrossRefGoogle Scholar
  67. 67.
    Satrani B, Ghanmi M, Farah A (2007) Composition chimique et activité antimicrobienne de l’huile essentielle de Cladanthus mixtus. Bull Soc Bordeaux 146:85–96Google Scholar
  68. 68.
    El Hassany B, El Hanbalia F, Akssiraa M, et al (2004) Germacranolides from Anvillea radiata. Fitoterapia 75:573–6CrossRefPubMedGoogle Scholar
  69. 69.
    Elmoussaouiti M, Talbaoui A, Gmouh S (2010) Chemical composition and bactericidal evaluation of essential oil of Tetraclinis articulata burl wood from Morocco. J Indian Acad Wood Sci 1:14–18CrossRefGoogle Scholar
  70. 70.
    Delaquis PJ, Stanich K, Girard B, et al (2002) Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int J Food Microbiol 74:101–9CrossRefPubMedGoogle Scholar
  71. 71.
    Mourey A, Canillac N (2002) Anti-Listeria monocytogenes activity of essential oils components of conifers. Food Control 13:289–92CrossRefGoogle Scholar
  72. 72.
    Tiwari BK, Valdramidis VP, O’Donnel CP (2009) Application of natural antimicrobials for food preservation. J Agric Food Chem 57:5987–6000CrossRefPubMedGoogle Scholar
  73. 73.
    Bouhdid S, Abrini J, Amensour M, et al (2009) Functional and ultrastructural changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by Origanum compactum essential oil. J Applied Microbiol 106:1558–68CrossRefGoogle Scholar
  74. 74.
    Bouhdid S, Abrini J, Amensour M, et al (2010) Functional and ultrastructural changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by Cinnamomum verum essential oil. J Applied Microbiol 109:1139–49CrossRefGoogle Scholar
  75. 75.
    Benchaar C, Calsamiglia S, Chaves AV, et al (2008) A review of plant-derived essential oils in ruminant nutrition and production. Anim Feed Sci Technol 145:209–28CrossRefGoogle Scholar
  76. 76.
    Heath RJ, Rock CO (2004) Fatty acid biosynthesis as a target for novel antibacterials. Curr Opin Invest Drugs 5:146–53Google Scholar
  77. 77.
    Burt SA, Reinders RD (2003) Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7. Lett Appl Microbiol 36:162–7CrossRefPubMedGoogle Scholar
  78. 78.
    Di Pasqua R, Betts G, Hoskins N, et al (2007) Membrane toxicity of antimicrobial compounds from essential oils. J Agric Food Chem 55:4863–70CrossRefPubMedGoogle Scholar
  79. 79.
    Fitzgerald DJ, Stratford M, Gasson MJ, et al (2004) Mode of antimicrobial of vanillin against Escherichia coli, Lactobacillus plantarum and Listeria innocua. J Appl Microbiol 97:104–13CrossRefPubMedGoogle Scholar
  80. 80.
    Domadia P, Swarup S, Bhunia A, et al (2007) Inhibition of bacterial cell division protein FtsZ by cinnamaldehyde. Biochem Pharmacol 74:831–40CrossRefPubMedGoogle Scholar
  81. 81.
    Turgis M, Han J, Caillet S, et al (2009) Antimicrobial activity of mustard essential oil against Escherichia coli O157:H7 and Salmonella typhi. Food Control 20:1073–79CrossRefGoogle Scholar
  82. 82.
    Caillet S, Lacroix M (2006) Effect of gamma radiation and oregano essential oil on murein and ATP concentration of Listeria monocytogenes. J Food Prot 69:2961–69CrossRefPubMedGoogle Scholar
  83. 83.
    Trosko JE (2016) Evolution of microbial quorum sensing to human global quorum sensing: an insight into how gap junctional intercellular communication might be linked to the global metabolic disease crisis. Biology (Basel) 5:29Google Scholar
  84. 84.
    Cai Y, Wang R, An MM (2010) Iron-depletion prevents biofilm formation in Pseudomonas aeruginosa through twitching motility and quorum sensing. Braz J Microbiol 41:37–41CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Bassler BL (2002) Small talk: cell-to-cell communication in bacteria. Cell 109:421–4CrossRefPubMedGoogle Scholar
  86. 86.
    Xu GM (2016) Relationships between the regulatory systems of quorum sensing and multidrug resistance. Front Microbiol 7:958PubMedPubMedCentralGoogle Scholar
  87. 87.
    Luís A, Duarte A, Gominho J, et al (2016) Chemical composition, antioxidant, antibacterial and anti-quorum sensing activities of Eucalyptus globulus and Eucalyptus radiata essential oils. Ind Crop Prod 79:274–82CrossRefGoogle Scholar
  88. 88.
    Myszka K, Schmidt MT, Majcher M (2016) Inhibition of quorum sensing-related biofilm of Pseudomonas fluorescens KM121 by Thymus vulgare essential oil and its major bioactive compounds. Int Biodeterior Biodegradation 114:252–9CrossRefGoogle Scholar
  89. 89.
    Luciardi MC, Blàzquez MA, Cartagena E (2016) Mandarin essential oils inhibit quorum sensing and virulence factors of Pseudomonas aeruginosa LWT — Food Sci Technol 68:373–80Google Scholar
  90. 90.
    Zhou L, Zheng H, Tang Y, et al (2013) Eugenol inhibits quorum sensing at sub-inhibitory concentrations. Biotechnol Lett 35:631–7CrossRefPubMedGoogle Scholar
  91. 91.
    Gill AO, Holley RA (2006) Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. Int J Food Microbiol 108:1–9CrossRefPubMedGoogle Scholar
  92. 92.
    Ultee A, Kets EPW, Alberda M, et al (2000) Adaptation of the food-borne pathogen Bacillus cereusto carvacrol. Arch Microbiol 174:233–8CrossRefPubMedGoogle Scholar
  93. 93.
    Ultee A, Smid EJ (2001) Influence of carvacrol on growth and toxin production by Bacillus cereus. Int J Food Microbiol 64:373–8CrossRefPubMedGoogle Scholar
  94. 94.
    Cox SD, Gustafson JE, Mann CM, et al (1998) Tea tree oil causes K+ leakage and inhibits respiration in Escherichia coli. Lett Appl Microbiol 26:355–8CrossRefPubMedGoogle Scholar
  95. 95.
    Lambert RJW, Skandamis PN, Coote PJ (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 91:453–62CrossRefPubMedGoogle Scholar
  96. 96.
    Di Pasqua R, Mamone G, Ferranti, P et al (2010) Changes in the proteome of Salmonella enteric serovar Thompson as stress adaptation to sublethal concentrations of thymol. Proteomics 10:1040–9PubMedGoogle Scholar
  97. 97.
    Niu S, Afre S, Gilbert ES (2006) Sub-inhibitory concentrations of cinnamaldehyde interfere with quorum sensing. Lett Appl Microbiol 43:489–94CrossRefPubMedGoogle Scholar
  98. 98.
    Faleiro ML (2011) The mode of antibacterial action of essential oils. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. Ed Brown Walker Press, Boca Raton, FL, USA, pp 1143–56Google Scholar

Copyright information

© Lavoisier 2017

Authors and Affiliations

  • A. Bouyahya
    • 1
    • 2
    Email author
  • Y. Bakri
    • 1
  • A. Et-Touys
    • 1
  • A. Talbaoui
    • 1
  • A. Khouchlaa
    • 1
  • S. Charfi
    • 2
  • J. Abrini
    • 2
  • N. Dakka
    • 1
  1. 1.Laboratoire de biochimie-immunologie, département de biologie, faculté des sciencesuniversité Mohammed-VRabatMaroc
  2. 2.Laboratoire de biologie et santé, faculté des sciencesuniversité Abdelmalek-EssaadiTétouanMaroc

Personalised recommendations