Skip to main content
Log in

Microbiote et plantes (Partie 1) : introduction et application pratique aux maladies inflammatoires chroniques de l’intestin (MICI)

Microbiota and Botanicals (Part 1): Introduction and practical application in bowel irritable diseases

  • Pharmacoclinique
  • Published:
Phytothérapie

Résumé

Le microbiote est un ensemble de microorganismes qui impactent la santé. Du fait de son action de fermentation des fibres et de son rôle dans le métabolisme, notamment celui des polyphénols, il est susceptible d’interférer favorablement dans une approche alternative ou complémentaire du traitement des MICI.

Abstract

Microbiota is a set of bacteria which impacts on the health. Because of fermentation of fibers and their role in phytochemical metabolism (e.g., polyphenols), microbiota can be a way for the treatment of bowel irritable diseases by complementary and alternative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Schroeder BO, Bäckhed F (2016) Signals from the gut microbiota to distant organs in physiology and disease. Nat Med 22:1079–89

    Article  CAS  PubMed  Google Scholar 

  2. Li D, Wang P, Wang P, et al (2016) The gut microbiota: a treasure for human health. Biotechnol Adv 34:1210–24

    Article  PubMed  Google Scholar 

  3. Bushman FD, Lewis JD, Wu GD (2013) Diet gut enterotypes and health: is there a link? Nestle Nutr Inst Workshop Ser 77:65–73

    Article  CAS  PubMed  Google Scholar 

  4. Frost GS, Walton GE, Swann JR (2014) Impacts of plant-based foods in ancestral hominin diets on the metabolism and function of gut microbiota in vitro. MBio 5:e00853–14

    Article  Google Scholar 

  5. Doré C, Rabhi P (2016) L’alimentation est devenue suspecte. Le Figaro.fr 21/10/2016

  6. Rachid R, Chatila TA (2016) The role of the gut microbiota in food allergy. Curr Opin Pediatr 28:748–53 (in abstract PubMed, PMID 27749359)

    Article  CAS  PubMed  Google Scholar 

  7. Lucas López R, Grande Burgos MJ, Gálvez A (2016) The human gastrointestinal tract and oral microbiota in inflammatory bowel disease: a state of the science review. APMIS, oct 5,1-8

  8. Prosberg M, Bendtsen F, Vind I, et al (2016) The association between the gut microbiota and the inflammatory bowel disease activity: a systematic review and meta-analysis. Scand J Gastroenterol 51:1407–15

    Article  CAS  PubMed  Google Scholar 

  9. Yu CG, Huang Q (2013) Recent progress on the role of gut microbiota in the pathogenesis of inflammatory bowel disease. J Dig Dis 14:513–7

    Article  CAS  PubMed  Google Scholar 

  10. West CE, Renz H, Jenmalm MC, et al (2015) The gut microbiota and inflammatory non communicable diseases: associations and potentials for gut microbiota therapies. J Allergy Clin Immunol 135:3–13

    Article  PubMed  Google Scholar 

  11. Wu GD, Bushmanc FD, Lewis JD (2013) Diet the human gut microbiota and IBD. Anaerobe 24:117–20

    Article  CAS  PubMed  Google Scholar 

  12. Blaut M (2015) Gut microbiota and energy balance: role in obesity. Proc Nutr Soc 74:227–34

    Article  CAS  PubMed  Google Scholar 

  13. Gérard P (2016) Gut microbiota and obesity. Cell Mol Life Sci 73:147–62

    Article  PubMed  Google Scholar 

  14. Khan MJ, Gerasimidis K, Edwards CA, et al (2016) Role of gut microbiota in the aetiology of obesity: proposed mechanisms and review of the literature. J Obes 2016:7353642

    PubMed  PubMed Central  Google Scholar 

  15. Arora T, Bäckhed F (2016) The gut microbiota and metabolic disease: current understanding and future perspectives. J Intern Med 80:339–49

    Article  Google Scholar 

  16. Wei Y, Yang J, Wang J, et al (2016) Successful treatment with fecal microbiota transplantation in patients with multiple organ dysfunction syndrome and diarrhea following severe sepsis. Crit Care 20:332

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gianotti RJ, Moss AC (2016) The use and efficacy of fecal microbiota transplantation for refractory Clostridium difficile in patients with inflammatory bowel disease. Inflamm Bowel Dis 22:2704–10

    Article  PubMed  Google Scholar 

  18. Seth AK, Rawal P, Bagga R (2016) Successful colonoscopic fecal microbiota transplantation for active ulcerative colitis: first report from India. Indian J Gastroenterol 35:393–5

    Article  PubMed  Google Scholar 

  19. Hirata Y, Ihara S, Koike K (2016) Targeting the complex interactions between microbiota, host epithelial and immune cells in inflammatory bowel disease. Pharmacol Res 113:574–84

    Article  CAS  PubMed  Google Scholar 

  20. Liu X, Cao S, Zhang X (2015) Modulation of gut microbiota–brain axis by probiotics. Prebiotics, and diet. J Agric Food Chem 63:7885–95

    Article  CAS  PubMed  Google Scholar 

  21. Fetissov SO (2016) Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behavior. Nat Rev Endocrinol, Jan, 13(1):11–25

    Article  Google Scholar 

  22. Breton J, Tennoune N, Lucas N, et al (2016) Gut commensal Escherichia coli proteins activate host satiety pathways following nutrient-induced bacterial growth. Cell Metab 23:324–34

    Article  CAS  PubMed  Google Scholar 

  23. Thorsen Y, Stimec B, Andersen SN, et al (2016) RCC study group, bowel function and quality of life after superior mesenteric nerve plexus transection in right colectomy with D3 extended mesenterectomy. Tech Coloproctol 20:445–53

    Article  CAS  PubMed  Google Scholar 

  24. De Vadder F, Mithieux G (2015) Glucose homeostasis and gut–brain connection. Med Sci (Paris) 31:168–73

    Article  Google Scholar 

  25. Gorvitovskaia A, Holmes SP, Huse SM (2016) Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle. Microbiome 4:15

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tedjo DI, Smolinska A, Savelkoul PH, et al (2016) The fecal microbiota as a biomarker for disease activity in Crohn’s disease. Sci Rep 6:35216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yamaguchi Y, Adachi K, Sugiyama T, et al (2016) Association of intestinal microbiota with metabolic markers and dietary habits in patients with type 2 diabetes. Digestion 94:66–72

    Article  CAS  PubMed  Google Scholar 

  28. Liu Y, Zhang L, Wang X, et al (2016) Similar fecal microbiota signatures in patients with diarrhea-predominant irritable bowel syndrome and patients with depression. Clin Gastroenterol Hepatol 14:1602–1611.e5

    Article  PubMed  Google Scholar 

  29. Tap J, Derrien M, Törnblom H, et al (2016) Identification of an intestinal microbiota signature associated with severity of irritable bowel syndrome. Gastroenterology Oct 7:1-13. pii:S0016-5085(16)35174-5

    Google Scholar 

  30. Bourassa MW, Alim I, Bultman SJ, Ratan RR (2016) Butyrate, neuroepigenetics and the gut microbiome: can a high fiber diet improve brain health? Neurosci Lett 625:56–63

    Article  CAS  PubMed  Google Scholar 

  31. Bultman SJ (2014) Molecular pathways: gene–environment interactions regulating dietary fiber induction of proliferation and apoptosis via butyrate for cancer prevention. Clin Cancer Res 20:799–803

    Article  CAS  PubMed  Google Scholar 

  32. Encarnação JC, Abrantes AM, Pires AS, et al (2015) Revisit dietary fiber on colorectal cancer: butyrate and its role on prevention and treatment. Cancer Metastasis Rev 34:465–78

    Article  PubMed  Google Scholar 

  33. Principi N, Esposito S (2016) Gut microbiota and central nervous system development. J Infect pii: S0163-4453(16)30251-1

    Google Scholar 

  34. Cong X, Xu W, Romisher R, et al (2016) Gut microbiome and infant health: brain–gut–microbiota axis and host genetic factors. Yale J Biol Med 89:299–308

    PubMed  PubMed Central  Google Scholar 

  35. Portune KJ, Benítez-Páez A, Del Pulgar EM, et al (2016) Gut microbiota, diet, and obesity-related disorders. The good, the bad, and the future challenges. Mol Nutr Food Res 00:1–17

    Google Scholar 

  36. Putignani L, Dallapiccola B (2016) Foodomics as part of the host-microbiota-exposome interplay. J Proteomics 147:3–20

    Article  CAS  PubMed  Google Scholar 

  37. Chen F, Jiang J, Tian DD, et al (2016) Targeting obesity for the prevention of chronic cardiovascular disease through gut microbiota-herb interactions: an opportunity for traditional herbs. Curr Pharm Des [Epub ahead of print] (In abstract Pub- Med, PMID 27758701)

    Google Scholar 

  38. Bai J, Zhu Y, Dong Y (2016) Response of gut microbiota and inflammatory status to bitter melon (Momordica charantia L.) in high fat diet induced obese rats. J Ethnopharmacol Dec 24, 194:717-26. pii: S0378-8741(16)31326-5 (In abstract Pub Med PMID 27751827)

    Article  Google Scholar 

  39. Carlson J, Esparza J, Swan J, et al (2016) In vitro analysis of partially hydrolyzed guar gum fermentation differences between six individuals. Food Funct 7:1833–8

    Article  CAS  PubMed  Google Scholar 

  40. Chen C, Huang Q, Fu X, et al (2016) In vitro fermentation of mulberry fruit polysaccharides by human fecal inocula and impact on microbiota. Food Funct Nov 9, 7(11):4637–43 (In abstract Pub Med PMID 27748781)

    Article  CAS  Google Scholar 

  41. Noack J, Timm D, Hospattankar A, et al (2013) Fermentation profiles of wheat dextrin, inulin and partially hydrolyzed guar gum using an in vitro digestion pretreatment and in vitro batch fermentation system model. Nutrients 5:1500–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Simpson HL, Campbell BJ (2015) Review article: dietary fibre–microbiota interactions. Aliment Pharmacol Ther 42:158–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jung TH, Jeon WM, Han KS (2015) In vitro effects of dietary inulin on human fecal microbiota and butyrate production. J Microbiol Biotechnol 25:1555–8

    Article  CAS  PubMed  Google Scholar 

  44. Sebastián C, Mostoslavsky R (2014) Untangling the fiber yarn: butyrate feeds Warburg to suppress colorectal cancer. Cancer Discov 4:1368–70

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lin SH, Chou LM, Chien YW (2016) Prebiotic effects of xylooligosaccharides on the improvement of microbiota balance in human subjects. Gastroenterol Res Pract 2:5789232

    Google Scholar 

  46. Costabile A, Deaville ER, Morales AM (2016) Prebiotic potential of a maize-based soluble fibre and impact of dose on the human gut microbiota. PLoS One 11:e0144457

    Article  Google Scholar 

  47. Nguyen SG, Kim J, Guevarra RB, et al (2016) Laminarin favorably modulates gut microbiota in mice fed a high-fat diet. Food Funct 7:4193–201

    Article  CAS  PubMed  Google Scholar 

  48. Carlson J, Gould T, Slavin J (2016) In vitro analysis of partially hydrolyzed guar gum fermentation on identified gut microbiota. Anaerobe 42:60–6

    Article  CAS  PubMed  Google Scholar 

  49. Ohashi Y, Sumitani K, Tokunaga M, et al (2015) Consumption of partially hydrolysed guar gum stimulates Bifidobacteria and butyrate-producing bacteria in the human large intestine. Benef Microbes 6:451–5

    Article  CAS  PubMed  Google Scholar 

  50. Cardona F, Andrés-Lacueva C, Tulipani S, et al (2013) Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem 24:1415–22

    Article  CAS  PubMed  Google Scholar 

  51. Parkar SG, Trower TM, Stevenson DE (2013) Fecal microbial metabolism of polyphenols and its effects on human gut microbiota. Anaerobe 23:12–9

    Article  CAS  PubMed  Google Scholar 

  52. Tomás-Barberán FA, Selma MV, Espín JC (2016) Interactions of gut microbiota with dietary polyphenols and consequences to human health. Curr Opin Clin Nutr Metab Care 19:471–6

    Article  PubMed  Google Scholar 

  53. Ozdal T, Sela DA, Xiao J, et al (2016) The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 8:78

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhou L, Wang W, Huang J, et al (2016) In vitro extraction and fermentation of polyphenols from grape seeds (Vitis vinifera) by human intestinal microbiota. Food Funct 7:1959–67

    Article  CAS  PubMed  Google Scholar 

  55. Bode LM, Bunzel D, Huch M, et al (2013) In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota. J Clin Nutr 97:295–309

    Article  CAS  Google Scholar 

  56. Anglemont de Tassigny AD (2001) Les phytoestrogènes: progrès ou danger ? Thèse de doctorat d’État en pharmacie, Bordeaux-II, 81 p

    Google Scholar 

  57. Gardana C, Canzi E, Simonetti P (2009) The role of diet in the metabolism of daidzein by human faecal microbiota sampled from Italian volunteers. J Nutr Biochem 20:940–7

    Article  CAS  PubMed  Google Scholar 

  58. Guadamuro L, Delgado S, Redruello B, et al (2015) Equol status and changes in fecal microbiota in menopausal women receiving long-term treatment for menopause symptoms with a soyisoflavone concentrate. Front Microbiol 6:777

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sun Q, Wedick NM, Pan A, et al (2014) Gut microbiota metabolites of dietary lignans and risk of type 2 diabetes: a prospective investigation in two cohorts of US women. Diabetes Care 37:1287–95

    Article  PubMed  PubMed Central  Google Scholar 

  60. González-Sarrías A, Giménez-Bastida JA, García-Conesa MT, et al (2010) Occurrence of urolithins, gut microbiota ellagic acid metabolites and proliferation markers expression response in the human prostate gland upon consumption of walnuts and pomegranate juice. Mol Nutr Food Res 54:311–22

    Article  PubMed  Google Scholar 

  61. Piwowarski JP, Kiss AK, Granica S, et al (2015) Urolithins, gut microbiota-derived metabolites of ellagitannins, inhibit LPSinduced inflammation in RAW 264.7 murine macrophages. Mol Nutr Food Res 59:2168–77

    Article  CAS  PubMed  Google Scholar 

  62. Leveque A (2012) Médecines alternatives et syndrome du côlon irritable (intérêt de la phytoaromathérapie et de la supplémentation nutritionnelle). Thèse de doctorat d’État en pharmacie, Rennes-I

  63. Bureau L (2012) Mieux se nourrir. Éd. Altal, Chambéry, 109 p

    Google Scholar 

  64. Bureau L (2012) La phytothérapie pertinente. Éd. Altal, Chambéry, 109 p

    Google Scholar 

  65. Guo Y, Zhang Y, Huang W, et al (2016) Dose-response effect of berberine on bile acid profile and gut microbiota in mice. BMC Complement Altern Med 16:394

    Article  PubMed  PubMed Central  Google Scholar 

  66. Habtemariam S (2016) Berberine and inflammatory bowel disease: a concise review. Pharmacol Res 113:592–9

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bureau.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bureau, L. Microbiote et plantes (Partie 1) : introduction et application pratique aux maladies inflammatoires chroniques de l’intestin (MICI). Phytothérapie 14, 370–375 (2016). https://doi.org/10.1007/s10298-016-1082-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10298-016-1082-z

Mots clés

Keywords

Navigation