Skip to main content
Log in

Revue commentée de plantes en aromathérapie

  • Actualités en Phytothérapie
  • Published:
Phytothérapie

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Souza IL, Correia AC, Araujo LC, et al (2015) Essential oil from Xylopia frutescens Aubl. reduces cytosolic calcium levels on guinea pig ileum: mechanism underlying its spasmolytic potential, BMC Complement Altern Med 15:327

    Article  PubMed Central  PubMed  Google Scholar 

  2. Ferraz RP, Cardoso GM, da Silva TB, et al (2013) Antitumour properties of the leaf essential oil of Xylopia frutescens Aubl. (Annonaceae). Food Chem 141:196–200

    Article  CAS  PubMed  Google Scholar 

  3. Correia AC, Ferreira TF, Martins IR, et al (2015) Essential oil from the leaves of Xylopia langsdorfiana (Annonaceae) as a possible spasmolytic agent. Nat Prod Res 10:980–4

    Article  Google Scholar 

  4. da Silva TB, Menezes LR, Sampaio MF, et al (2013) Chemical composition and anti-Trypanosoma cruzi activity of essential oils obtained from leaves of Xylopia frutescens and X. laevigata (Annonaceae). Nat Prod Commun 3:403–6

    Google Scholar 

Références

  1. Bikmoradi A, Seifi Z, Poorolajal J, et al (2015) Effect of inhalation aromatherapy with lavender essential oil on stress and vital signs in patients undergoing coronary artery bypass surgery: A single-blinded randomized clinical trial. Complement Ther Med 23:331–8

    Article  PubMed  Google Scholar 

  2. Seifi Z, Beikmoradi A, Oshvandi K, et al (2014) The effect of lavender essential oil on anxiety level in patients undergoing coronary artery bypass graft surgery: A double-blinded randomized clinical trial. Iran J Nurs Midwifery Res 19:574–80

    PubMed Central  PubMed  Google Scholar 

  3. Najafi Z, Taghadosi M, Sharifi K, et al (2014) The effects of inhalation aromatherapy on anxiety in patients with myocardial infarction: a randomized clinical trial. Iran Red Crescent Med J 16:e15485

    PubMed Central  PubMed  Google Scholar 

Références

  1. Chen W, Liu Y, Li M, et al (2015) Anti-tumor effect of α-pinene on human hepatoma cell lines through inducing G2/M cell cycle arrest. J Pharmacol Sci 127:332–8

    Article  PubMed  Google Scholar 

  2. Chen WQ, Xu B, Mao JW, et al (2014) Inhibitory effects of α-pinene on hepatoma carcinoma cell proliferation. Asian Pac J Cancer Prev 15:3293–7

    Article  PubMed  Google Scholar 

  3. Zhu F, Wei F, Zhang C, et al (2015) Inhibitory Effect of α-Pinene on SGC-7901 Cell Proliferation and the Mechanism of ATM Kinase Signaling Pathway. Chin Med 6:27–33

    Article  Google Scholar 

  4. Kim DS, Lee HJ, Jeon YD, et al (2015) Alpha-Pinene Exhibits Anti-Inflammatory Activity Through the Suppression of MAPKs and the NF-κB Pathway in Mouse Peritoneal Macrophages. Am J Chin Med 43:731–42

    Article  CAS  PubMed  Google Scholar 

  5. Zhang Z, Guo S, Liu X, et al (2015) Synergistic antitumor effect of α-pinene and β-pinene with paclitaxel against non-small-cell lung carcinoma (NSCLC). Drug Res (Stuttg) 65:214–8

    CAS  Google Scholar 

  6. Kasuya H, Okada N, Kubohara M, et al (2015) Expression of BDNF and TH mRNA in the brain following inhaled administration of α-pinene. Phytother Res 29:43–7

    Article  CAS  PubMed  Google Scholar 

  7. Kasuya H, Iida S, Ono K, et al (2015) Intracerebral Distribution of a-Pinene and the Anxiolytic-like Effect inMice Following Inhaled Administration of Essential Oil from Chamaecyparis obtuse. Nat Prod Commun 10:1479–82

    PubMed  Google Scholar 

  8. Satou T, Kasuya H, Maeda K, et al (2014) Daily inhalation of α-pinene in mice: effects on behavior and organ accumulation. Phytother Res 28:1284–7

    Article  CAS  PubMed  Google Scholar 

  9. Pinheiro Mde A, Magalhães RM, Torres DM, et al (2015) Gastroprotective effect of alpha-pinene and its correlation with antiulcerogenic activity of essential oils obtained from Hyptis species. Pharmacogn Mag 11:123–30

    PubMed  Google Scholar 

  10. Nam SY, Chung CK, Seo JH, et al (2014) The therapeutic efficacy of α-pinene in an experimental mouse model of allergic rhinitis. Int Immunopharmacol 23:273–82

    Article  CAS  PubMed  Google Scholar 

  11. Kovač J, Šimunovič K, Wu Z, et al (2015) Antibiotic resistance modulation and modes of action of (-)-α-pinene in Campylobacter jejuni. PLoS One 10: e0122871

    Article  PubMed Central  PubMed  Google Scholar 

  12. Haselton AT, Acevedo A, Kuruvilla J, et al. (2015) Repellency of α-pinene against the house fly, Musca domestica. Phytochemistry 117:469–75

    Article  CAS  PubMed  Google Scholar 

  13. Aljawhary D, Zhao R, Lee AK, et al (2015) Kinetics, Mechanism, and Secondary Organic Aerosol Yield of Aqueous Phase Photo-oxidation of α-Pinene Oxidation Products. J Phys Chem A Aug 31

    Google Scholar 

  14. Hohaus T, Gensch I, Kimmel J, et al (2015) Experimental determination of the partitioning coefficient of β-pinene oxidation products in SOAs. Phys Chem Chem Phys 17:14796–804

    Article  CAS  PubMed  Google Scholar 

  15. Epstein SA, Blair SL, Nizkorodov SA (2014) Direct photolysis of a-pinene ozonolysis secondary organic aerosol: effect on particle mass and peroxide content. Environ Sci Technol 48:11251–8

    Article  CAS  PubMed  Google Scholar 

  16. Kidd C, Perraud V, Finlayson-Pitts BJ (2014) New insights into secondary organic aerosol from the ozonolysis of α-pinene from combined infrared spectroscopy and mass spectrometry measurements. Phys Chem Chem Phys 16:22706–16

    Article  CAS  PubMed  Google Scholar 

  17. Rissanen MP, Kurtén T, Sipilä M, et al (2015) Effects of chemical complexity on the autoxidation mechanisms of endocyclic alkene ozonolysis products: from methylcyclohexenes toward understanding α-pinene. J Phys Chem A 119:4633–50

    Article  CAS  PubMed  Google Scholar 

Références

  1. Kasuya H, Hata E, Satou T, et al (2013) Effect on emotional behavior and stress by inhalation of the essential oil from Chamaecyparis obtuse. Nat Prod Commun 8:515–8

    CAS  PubMed  Google Scholar 

  2. Park HJ, Kim SK, Kang WS, et al (2014) Effects of essential oil from Chamaecyparis obtusa on cytokine genes in the hippocampus of maternal separation rats. Can J Physiol Pharmacol 92:95–101

    Article  CAS  PubMed  Google Scholar 

  3. Kasuya H, Iida S, Ono K, et al (2015) Intracerebral Distribution of a-Pinene and the Anxiolytic-like Effect in Mice Following Inhaled Administration of Essential Oil from Chamaecyparis obtusa. Nat Prod Commun 10:1479–82

    PubMed  Google Scholar 

  4. Bae D, Seol H, Yoon HG (2012) Inhaled essential oil from Chamaecyparis obtusa ameliorates the impairments of cognitive function induced by injection of β-amyloid in rats. Pharm Biol 50: 900–10

    Article  PubMed  Google Scholar 

  5. An BS, Kang JH, Yang H, et al (2013) Anti-inflammatory effects of essential oils from Chamaecyparis obtusa via the cyclooxygenase-2 pathway in rats. Mol Med Rep 8:255–9

    CAS  PubMed  Google Scholar 

  6. Chien TC, Lo SF, Ho CL (2014) Chemical composition and anti-inflammatory activity of Chamaecyparis obtusa f.formosana wood essential oil from Taiwan. Nat Prod Commun 9:723–6

    CAS  PubMed  Google Scholar 

Références

  1. Jang H, Lee JW, Lee C, et al (2015) Sesquiterpenoids from Tussilago farfara inhibit LPS-induced nitric oxide production in macrophage RAW 264.7 cells. Arch Pharm Res Oct 17

    Google Scholar 

  2. Qin ZB, Zhang J, Wu XD, et al (2014) Sesquiterpenoids from Tussilago farfara and their inhibitory effects on nitric oxide production. Planta Med 80:703–9

    Article  CAS  PubMed  Google Scholar 

  3. Wu QZ, Zhao DX, Xiang J, et al (2015) Antitussive, expectorant, and anti-inflammatory activities of four caffeoylquinic acids isolated from Tussilago farfara. Pharm Biol 6:1–8

    Google Scholar 

  4. Li D, Liang L, Zhang J, et al (2015) Application of microscopy technique and high-performance liquid chromatography for quality assessment of the flower bud of Tussilago farfara L. (Kuandonghua). Pharmacogn Mag 11:594–600

    Article  PubMed Central  PubMed  Google Scholar 

  5. Seo UM, Zhao BT, Kim WI, et al (2015) Quality evaluation and pattern recognition analyses of bioactive marker compounds from Farfarae Flos using HPLC/PDA. Chem Pharm Bull (Tokyo) 63:546–53

    Article  Google Scholar 

  6. Nedelcheva A, Kostova N, Sidjimov A (2015) Pyrrolizidine alkaloids in Tussilago farfara from Bulgaria. Biotechnology Biotechnological Equipm 9:S1–S7

    Article  Google Scholar 

  7. Neuman MG, Cohen L, Opris M, et al (2015) Hepatotoxicity of Pyrrolizidine Alkaloids. J Pharm Sci 18:825–43

    Google Scholar 

  8. Schulz M, Meins J, Diemert S, et al (2015) Detection of pyrrolizidine alkaloids in German licensed herbal medicinal teas. Phytomedicine 22:648–56

    Article  CAS  PubMed  Google Scholar 

  9. Shimshoni JA, Duebecke A, Mulder PP, et al (2015) Pyrrolizidine and tropane alkaloids in teas and the herbal teas peppermint, rooibos and chamomile in the Israeli market. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 32: 2058–67

    CAS  PubMed  Google Scholar 

  10. Ghédira K, Goetz P (2015) Tussilage, Tussilago farfara L. (Asteraceae). Phytothérapie 13:406–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bureau.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bureau, L. Revue commentée de plantes en aromathérapie. Phytothérapie 14, 73–77 (2016). https://doi.org/10.1007/s10298-016-1018-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10298-016-1018-7

Navigation