Skip to main content
Log in

Revue commentée de plantes médicinales

  • Actualités En Phytothérapie
  • Published:
Phytothérapie

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Xia EQ, Song Y, Ai XX, et al (2010) A new highperformance liquid chromatographic method for the determination and distribution of linalool in Michelia alba. Molecules 15:4890–7

    Article  CAS  PubMed  Google Scholar 

  2. Cheng BH, Sheen LY, Chang ST (2014) Evaluation of anxiolytic potency of essential oil and S-(+)-linalool from Cinnamomum osmophloeum ct. linalool leaves in mice. J Trad Compl Med 5:27–34

    Article  Google Scholar 

  3. Weston RJ (2010) Bioactive products from fruit of the feijoa (Feijoa sellowiana, Myrtaceae):A review. Food Chemistr 121:923–6

    Article  CAS  Google Scholar 

  4. Pasquariello MS (2015) Agronomic, nutraceutical and molecular variability of feijoa (Acca sellowiana (O. Berg) Burret) germplasm. Scientia Horticulturae 191:1–9

    Article  CAS  Google Scholar 

  5. http://ec.europa.eu/food/safety/novel_food/catalogue/index_en.htm

  6. Katsuyama S, Otowa A, Kamio S (2015) Effect of plantar subcutaneous administration of bergamot essential oil and linalool on formalin-induced nociceptive behavior in mice. Biomed Res 36:47–54

    Article  CAS  PubMed  Google Scholar 

  7. Kuczkowiak U, Petereit F, Nahrstedt A (2014) Hydroxycinnamic Acid Derivatives Obtained from a Commercial Crataegus Extract and from Authentic Crataegus spp. Sci Pharm 82:835–46

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hellenbrand N, Sendker J, Lechtenberg M (2015) Isolation and quantification of oligomeric and polymeric procyanidins in leaves and flowers of Hawthorn (Crataegus spp.). Fitoterapia 104:14–22

    Article  CAS  PubMed  Google Scholar 

  9. Abu-Reidah IM, Arráez-Román D, Segura-Carretero A, et al (2013) Extensive characterisation of bioactive phenolic constituents from globe artichoke (Cynara scolymus L.) by HPLC-DAD-ESI-QTOF-MS. Food Chem 141:2269–77

    Article  CAS  PubMed  Google Scholar 

  10. Pereira C, Barros L, Carvalho AM, et al (2015) Infusions of artichoke and milk thistle represent a good source of phenolic acids and flavonoids. Food Funct 6:56–62

    PubMed  Google Scholar 

  11. Negro D, Montesano V, Grieco S (2012) Polyphenol compounds in artichoke plant tissues and varieties. J Food Sci 77:C244–52

    Article  CAS  PubMed  Google Scholar 

  12. Aremu AO, Moyo M, Amoo SO, et al (2015) Ethnobotany, therapeutic value, phytochemistry and conservation status of Bowiea volubilis: Awidely used bulbous plant in southern Africa J Ethnopharmacol JEPD1500978

    Google Scholar 

  13. Fasinu PS, Bouic PJ, Rosenkranz B (2014) The inhibitory activity of the extracts of popular medicinal herbs on CYP1A2, 2C9, 2C19 and 3A4 and the implications for herb-drug interaction, Afr J Tradit Complement Altern Med 11:54–61

    Article  PubMed Central  PubMed  Google Scholar 

  14. Matkowski A, Jamiolkowska-Kozlowska W, Nawrot I (2013) Chinese medicinal herbs as source of antioxidant compounds—where tradition meets the future. Curr Med Chem 20:984–1004

    CAS  PubMed  Google Scholar 

  15. Rangel-Huerta OD, Aguilera CM, Martin MV, et al (2015) Normal or High Polyphenol Concentration in Orange Juice Affects Antioxidant Activity, Blood Pressure, and Body Weight in Obese or Overweight Adults. J Nutr 145:1808–16

    Article  CAS  PubMed  Google Scholar 

  16. Gogia N, Bukia Z, Atamashvili T (2015) The amount of polyphenols and antioxidant activity of fruits of different varieties of apple tree--Malus domectica L., Georgian Med News 84–8

    Google Scholar 

  17. Kowalska T, Cieśla Ł (2015) Assessment of Antioxidant and Antibacterial Potential of Medicinal Herbs and Botanical Preparations. J AOAC Int 98:847–9

    Article  PubMed  Google Scholar 

  18. Waisundara VY, Watawana MI (2014) The classification of sri lankan medicinal herbs:an extensive comparison of the antioxidant activities. J Trad Compl Med 4:196–202

    Article  Google Scholar 

  19. Itankar PR, Sontakke VA, Tauqeer M (2014) Antioxidant potential and its relationship with polyphenol content and degree of polymerization in Opuntia elatior Mill fruits. Ayu 35:423–7

    Article  PubMed Central  PubMed  Google Scholar 

  20. Svarcova I, Heinrich J, Valentova K (2007) Berry fruits as a source of biologically active compounds:the case of Lonicera caerulea, Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 151:163–74

    Article  CAS  PubMed  Google Scholar 

  21. Wojdylo A, Jáuregui PN, Carbonell-Barrachina AA, et al (2013) Variability of phytochemical properties and content of bioactive compounds in Lonicera caerulea L. var. kamtschatica berries. J Agric Food Chem 61:12072–84

    Article  CAS  PubMed  Google Scholar 

  22. Bonarska-Kujawa D, Pruchnik H, Cyboran S, et al (2014) Biophysical mechanism of the protective effect of blue honeysuckle (Lonicera caerulea L. var. kamtschatica Sevast.) polyphenols extracts against lipid peroxidation of erythrocyte and lipid membranes. J Membr Biol 247:611–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Celli GB, Ghanem A, Brooks MS (2015) Optimization of ultrasound-assisted extraction of anthocyanins from haskap berries (Lonicera caerulea L.) using Response Surface Methodology. Ultrason Sonochem 27:449–55

    Article  CAS  PubMed  Google Scholar 

  24. Heinrich J, Valentová K, Vacek J, et al (2013) Metabolic profiling of phenolic acids and oxidative stress markers after consumption of Lonicera caerulea L. fruit. J Agric Food Chem 61:4526–32

    Article  CAS  PubMed  Google Scholar 

  25. Svarcova I, Heinrich J, Valentova K (2007) Berry fruits as a source of biologically active compounds:the case of Lonicera caerulea, Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 151:163–74

    Article  CAS  PubMed  Google Scholar 

  26. Wojdylo A, Jáuregui PN, Carbonell-Barrachina AA, et al (2013) Variability of phytochemical properties and content of bioactive compounds in Lonicera caerulea L. var. kamtschatica berries. J Agric Food Chem Dec 61:12072–84

    Article  CAS  Google Scholar 

  27. Celli GB, Ghanem A, Brooks MS (2015) Optimization of ultrasound-assisted extraction of anthocyanins from haskap berries (Lonicera caerulea L.) using Response Surface Methodology Ultrason Sonochem 27:449–55

    CAS  PubMed  Google Scholar 

  28. Bonarska-Kujawa D, Pruchnik H, Cyboran S, et al (2014) Biophysical mechanism of the protective effect of blue honeysuckle (Lonicera caerulea L. var. kamtschatica Sevast.) polyphenols extracts against lipid peroxidation of erythrocyte and lipid membranes. J Membr Biol 247:611–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Heinrich J, Valentová K, Vacek J, et al (2013) Metabolic profiling of phenolic acids and oxidative stress markers after consumption of Lonicera caerulea L. fruit. J Agric Food Chem 61:4526–32

    Article  CAS  PubMed  Google Scholar 

  30. Ascheri JLR, Zamudio LHB, Carvalho CWP, et al (2014) Extraction and Characterization of Starch Fractions of Five Phenotypes Pachyrhizus tuberosus (Lam.) Spreng. Food Nutr Sci 5(19):1875

    Article  CAS  Google Scholar 

  31. Catteau L, Lautié E, Koné O, et al (2013) Degradation of rotenone in yam bean seeds (Pachyrhizus sp.) through food processing. J Agricult Food Chemistr 61(46):11173–9

    Article  CAS  Google Scholar 

  32. Doporto MC, Mugridge A, García MA, et al (2011) Pachyrhizus ahipa (Wedd.) Parodi roots and flour:Biochemical and functional characteristics, Food Chem 15:126(4):1670–8

    Article  Google Scholar 

  33. Estrella-Parra EA, Gomez-Verjan JC, González-Sánchez I, et al (2014) Rotenone isolated from Pachyrhizus erosus displays cytotoxicity and genotoxicity in K562 cells. Nat Prod Res 28(20):1780–5

    Article  CAS  PubMed  Google Scholar 

  34. Gruneberg WJ, Freynhagen-Leopold P, Delgado-Vaquez O (2003). A new yam bean (Pachyrhizus spp.) interspecific hybrid. Genet Resourc Crop Evol 50:757–66

    Article  Google Scholar 

  35. Kumalasari ID, Nishi K, Harmayani E, et al (2014) Immunomodulatory activity of Bengkoang (Pachyrhizus erosus) fiber extract in vitro and in vivo. Cytotechnology 66(1):75–85

    Article  PubMed Central  PubMed  Google Scholar 

  36. Leuner O, Havlik J, Budesinsky M, et al (2013) Cytotoxic constituents of Pachyrhizus tuberosus from Peruvian amazon. Nat Prod Commun 8(10):1423–6

    CAS  PubMed  Google Scholar 

  37. Mélo EA, Stamford TL, Silva MP, et al (2003) Functional properties of yam bean (Pachyrhizus erosus) starch. Bioresour Technol 89(1):103–6

    Article  PubMed  Google Scholar 

  38. Mussury RM, Scalon SP, Silva MA, et al (2013) Postharvest conservation of the tuberous roots of Pachyrhizus Ahipa (Wedd) Parodi. An Acad Bras Cienc 85(2):761–8

    Article  PubMed  Google Scholar 

  39. Park CJ, Han JS (2015) Hypoglycemic Effect of Jicama (Pachyrhizus erosus) Extract on Streptozotocin-Induced Diabetic Mice. Prev Nutr Food Sci 20(2):88–93

    Article  PubMed Central  PubMed  Google Scholar 

  40. Santos AC, Cavalcanti MS, Coelho LC (1996) Chemical composition and nutritional potential of yam bean seeds (Pachyrhizus erosus L. urban). Plant Foods Hum Nutr 49(1):35–41

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bureau.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bureau, L. Revue commentée de plantes médicinales. Phytothérapie 13, 347–353 (2015). https://doi.org/10.1007/s10298-015-0988-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10298-015-0988-1

Navigation