Advertisement

Phytothérapie

, Volume 11, Issue 6, pp 353–358 | Cite as

Pouvoir antimicrobien de Thymus lanceolatus Desf., récolté en Algérie

  • A. KhadirEmail author
  • M. Bendahou
  • F. Benbelaid
  • M. A. Abdoune
  • D. E. Abdelouahid
Article original Aromathérapie

Résumé

Les plantes aromatiques et médicinales constituent une source importante de molécules antimicrobiennes notamment dans leurs extraits volatiles, et le genre Thymus est considéré parmi les plus riches en huiles essentielles. Dans le présent travail, le pouvoir antimicrobien de Thymus lanceolatus Desf. d’Algérie est évalué pour la première fois. L’activité antimicrobienne a été testée par la technique de diffusion en gélose et par calcul des concentrations minimales inhibitrices (CMI) à l’aide de microdilution. L’activité antimicrobienne en phase vapeur a également été testée. Les résultats ont montré une très bonne activité antimicrobienne à l’exception de Pseudomonas aeruginosa qui a opposé une résistance à l’action de l’huile essentielle. Le test de la phase en vapeur a montré une activité relativement semblable au test de la diffusion en gélose pour la plupart des souches, excepté le cas d’Enterococcus faecalis qui a montré plus de sensibilité en phase vapeur que dans les autres tests.

Mots clés

Thymus lanceolatus Activité antimicrobienne Huile essentielle 

Antimicrobial potency of Thymus lanceolatus Desf. collected in Algeria

Abstract

Aromatic and medicinal plants are an important source of antimicrobial molecules, especially in volatile extracts. The genus Thymus is considered among the richest genera in essential oils. In this work, the antimicrobial potency of Thymus lanceolatus Desf. from Algeria was evaluated for the first time. Antimicrobial activity was tested using disk diffusion method and minimum inhibitory concentrations (MICs) were calculated by microdilution. Antimicrobial activity in the vapor phase was also tested. Results have shown very good antimicrobial activity except for Pseudomonas aeruginosa which was resistant against the action of the essential oil. Vapor phase test has shown relatively similar results to disk diffusion test for most strains except Enterococcus faecalis which was more sensitive to vapor phase compared with the other tests.

Keywords

Thymus lanceolatus Antimicrobial activity Essential oil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Council of Europe (2005) European Pharmacopoeia 5th, pp. 2567–2568Google Scholar
  2. 2.
    Bekhechi C, Bekkara FA, Abdelouahid DE, et al. (2007) Composition and antibacterial activity of the essential oil of Thymus fontanesii Boiss. et Reut. from Algeria. J Essent Oil Res 19: 594–596CrossRefGoogle Scholar
  3. 3.
    Bousmaha-Marroki L, Atik-Bekkara F, Tomi F, Casanova J (2007) Chemical composition and antibacterial activity of the essential oil of Thymus ciliatus (Desf.) Benth. ssp. eu-ciliatus Maire from Algeria. J Essent Oil Res 19: 490–493CrossRefGoogle Scholar
  4. 4.
    Bozin B, Mimica-Dukic N, Simin N, Anackov G (2006) Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J Agric Food Chem 54: 1822–1828PubMedCrossRefGoogle Scholar
  5. 5.
    Buchbauer G (2011) A review on recent research results (2008–2010) on essential oils as antimicrobials and antifungals. A review. Flavour Fragr J 27: 13–39Google Scholar
  6. 6.
    Chao SC, Young DG, Oberg CJ (2000) Screening for inhibitory activity of essential oils on selected bacteria, fungi and viruses. J Essent Oil Res 12: 639–649CrossRefGoogle Scholar
  7. 7.
    Chemat S, Cherfouh R, Meklati BY, Belanteur K (2012) Composition and microbial activity of thyme (Thymus algeriensis genuinus) essential oil. J Essent Oil Res 24: 5–11CrossRefGoogle Scholar
  8. 8.
    CLSI (2011) Performance standards for antimicrobial susceptibility testing; Twenty-First Informational Supplement. M100-S21-31Google Scholar
  9. 9.
    De Martino L, De Feo V, Nazzaro F (2009) Chemical composition and in vitro antimicrobial and mutagenic activities of seven Lamiaceae essential oils. Molecules 14: 4213–4230PubMedCrossRefGoogle Scholar
  10. 10.
    Dob T, Dahmane D, Benabdelkader T, Chelghoum C (2006) Studies on the essential oil composition and antimicrobial activity of Thymus algeriensis Boiss. et Reut. Int J Aromather 16: 95–100CrossRefGoogle Scholar
  11. 11.
    Dorman HJD, Deans SG (2004) Chemical composition, antimicrobial and in vitro antioxidant properties of Monarda citriodora var. citriodora, Myristica fragrans, Origanum vulgare ssp. hirtum, Pelargonium sp. and Thymus zygis Oils. J Essent Oil Res 16: 145–150CrossRefGoogle Scholar
  12. 12.
    Giordani R, Regli P, Kaloustian J, et al. (2004) Antifungal effect of various essential oils against Candida albicans. Potentiation of antifungal action of amphotericin B by essential oil from Thymus vulgaris. Phytother Res 18: 990–995PubMedCrossRefGoogle Scholar
  13. 13.
    Gonçalves MJ, Cruz MT, Cavaleiro C, et al. (2010) Chemical, antifungal and cytotoxic evaluation of the essential oil of Thymus zygis subsp. sylvestris. Ind Crops Prod 32: 70–75CrossRefGoogle Scholar
  14. 14.
    Hazzit M, Baaliouamer A, Faleiro ML, Miguel MG (2006) Composition of the essential oils of Thymus and Origanum species from Algeria and their antioxidant and antimicrobial activities. J Agric Food Chem 54: 6314–6321PubMedCrossRefGoogle Scholar
  15. 15.
    Hazzit M, Baaliouamer A, Veríssimo AR, et al. (2009) Chemical composition and biological activities of Algerian Thymus oils. Food Chem 116: 714–721CrossRefGoogle Scholar
  16. 16.
    Inouye S, Takizawa T, Yamaguchi Y (2001) Antibacterial activity of essential oil and their major constituents against respiratory tract pathogens by gaseous contact. J Antimicrob Chemother 47: 565–573PubMedCrossRefGoogle Scholar
  17. 17.
    Inouye S (2003) Comparative study of antimicrobial and cytotoxic effects of selected essential oils by gaseous and solution contacts. Int J Aromather 13: 33–41CrossRefGoogle Scholar
  18. 18.
    Kalemba D, Kunicka A (2003) Antibacterial and antifungal properties of essential oils. Curr Med Chem 10: 813–829PubMedCrossRefGoogle Scholar
  19. 19.
    Khan MS, Ahmad I (2011) Antifungal activity of essential oils and their synergy with fluconazole against drug-resistant strains of Aspergillus fumigatus and Trichophyton rubrum. Appl Microbiol biotechnol 90: 1083–1094PubMedCrossRefGoogle Scholar
  20. 20.
    Kloucek P, Smid J, Frankova A, et al. (2012) Fast screening method for assessment of antimicrobial activity of essential oils in vapor phase. Food Res Int 47: 161–165CrossRefGoogle Scholar
  21. 21.
    Laird K, Phillips C (2012) Vapour phase: a potential future use for essential oils as antimicrobials? Lett Appl Microbiol 54: 169–174PubMedCrossRefGoogle Scholar
  22. 22.
    Longbottom CJ, Carson CF, Hammer KA, et al. (2004) Tolerance of Pseudomonas aeruginosa to Melaleuca alternifolia (tea tree) oil is associated with the outer membrane and energy-dependent cellular processes. J Antimicrob Chemother 54: 386–392PubMedCrossRefGoogle Scholar
  23. 23.
    Lopez P, Sanchez C, Batlle R, Nerin C (2005) Solid- and vapor-phase antimicrobial activities of six essential oils: susceptibility of selected foodborne bacterial and fungal strains. J Agric Food Chem 53: 6939–6946PubMedCrossRefGoogle Scholar
  24. 24.
    Mann C, Cox S, Markham J (2000) The outer membrane of Pseudomonas aeruginosa NCTC 6749 contributes to its tolerance to the essential oil of Melaleuca alternifolia (tea tree oil). Lett Appl Microbiol 30: 294–297PubMedCrossRefGoogle Scholar
  25. 25.
    Nedorostova L, Kloucek P, Kokoska L, et al. (2009) Antimicrobial properties of selected essential oils in vapour phase against foodborne bacteria. Food Control 20: 157–160CrossRefGoogle Scholar
  26. 26.
    Ponce AG, Fritz R, del Valle C, Roura SI (2003) Antimicrobial activity of essential oils on the native microflora of organic Swiss chard. LWT. Food Sci Technol 36: 679–684CrossRefGoogle Scholar
  27. 27.
    Quezel P, Santa S (1963) Nouvelle flore d’Algérie régions désertiques méridionales. CNRS Paris France Tome 2-2, p. 806Google Scholar
  28. 28.
    Rota MC, Herrera A, Martínez RM, et al. (2008) Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Control 19: 681–687CrossRefGoogle Scholar
  29. 29.
    Shin S, Lim S (2004) Antifungal effects of herbal essential oils alone and in combination with ketoconazole against Trichophyton spp. J Appl Microbiol 97: 1289–1296PubMedCrossRefGoogle Scholar
  30. 30.
    Smith-Palmer A, Stewart J, Fyfe L (1998) Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett Appl Microbiol 26: 118–122PubMedCrossRefGoogle Scholar
  31. 31.
    Stahl-Biskup E, Saez F (2002) Thyme: the genus Thymus Medicinal and Aromatic Plants-Industrial Profiles Taylor & Francis, New York, NY, USA, pp. 77–78CrossRefGoogle Scholar
  32. 32.
    Steflitsch W, Steflitsch M (2008) Clinical aromatherapy. J Men’s Health 5: 74–85CrossRefGoogle Scholar
  33. 33.
    Wagner H, Ulrich-Merzenich G (2009) Synergy research: approaching a new generation of phytopharmaceuticals. Phytomedicine 16: 97–110PubMedCrossRefGoogle Scholar
  34. 34.
    Walsh C (2003) Where will new antibiotics come from? Nat Rev Microbiol 65: 65–70CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France 2013

Authors and Affiliations

  • A. Khadir
    • 1
    Email author
  • M. Bendahou
    • 1
  • F. Benbelaid
    • 1
  • M. A. Abdoune
    • 1
  • D. E. Abdelouahid
    • 1
  1. 1.Laboratoire de microbiologie appliquée à l’agroalimentaire, au biomédical et à l’environnement, LAMAABEuniversité de TlemcenTlemcenAlgérie

Personalised recommendations