Skip to main content
Log in

In vitro evaluation of antioxidant activity of the hydro-methanolic extracts of Juniperus oxycedrus subsp. oxycedrus

Évaluation in vitro de l’activité antioxydante d’extraits hydro-méthanoliques de Juniperus oxycedrus subsp. oxycedrus

  • Article Original
  • Pharmacognosie
  • Published:
Phytothérapie

Abstract

Polyphenols are bioactive molecules with much scientific attention because of their multiple biological activities. This study aims to compare the phenolic content in the extracts hydro-methanolic needles and roots bark of Juniperus oxycedrus subsp. oxycedrus and their antioxidant activity by five different methods (total antioxidant capacity, DPPH, ABTS, β-carotene and ferric reducing power). Results showed that needles extract exhibited the highest polyphenol (133.08 ± 4.1 GAE.g−1DW) flavonoid (61.5 2 ± 3.1 CEf·g−1DW) and tannin (26.43 ± 2.6 CEt.g−1DW) contents. Both of extracts revealed a significant antioxidant activity. However, the roots bark extract displayed the highest capacity with the lowest IC50 value (2.9 ± 0.2 μgmL−1) in DPPH scavenging method. Overall, this paper established that the roots bark possess high in vitro antioxidant potency although they possess less phenolic compounds than needles. Therefore, our results can confirm that the high content of total phenols in the extracts does not explain the strong antioxidant properties. The nature of these compounds and synergistic interactions can influence this ability.

Résumé

Les polyphénols sont des molécules recherchées scientifiquement à cause de leurs multiples activités biologiques. Cette étude vise à comparer le contenu phénolique dans les extraits hydro-méthanoliques d’écorces de racines et d’aiguilles de Juniperus oxycedrus subsp. oxycedrus et leurs activités antioxydantes par cinq méthodes différentes (la capacité antioxydante totale, DPPH, ABTS, β-carotène et le pouvoir réducteur). Les résultats ont montré que l’extrait d’aiguilles a des teneurs les plus élevées en polyphénols (133,08 ± 4,1 GAE/g matière sèche), en flavonoïdes (61,5 ± 3,1 CEf/g MS) et en tanins (26,43 ± 2,6 Cet/g MS). Les deux extraits ont révélé une activité antioxydante significative. Cependant, l’extrait d’écorces de racines a la plus grande capacité avec une plus faible valeur d’IC50 (2,9 ± 0,2 μg mL−1) en piégeant le radical DPPH. Dans l’ensemble, cette étude a établi que les écorces de racines possèdent un grand pouvoir antioxydant malgré qu’ils aient moins de composés phénoliques que les aiguilles. Donc, nos résultats peuvent confirmer que la teneur élevée en phénols totaux dans les extraits n’explique pas les fortes propriétés antioxydantes. La nature de ces composés et les interactions synergiques peuvent aussi influencer cette capacité.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Aganga AA, Mosase KW (2001) Tannins content, nutritive value and dry matter digestibility of Lonchocarous capussa, Ziziphus mucropata, Sclerocarya birrea, Kirkia acuminata and Rhus lancea seeds. Anim Feed Sci Technol 91: 107–113

    Article  CAS  Google Scholar 

  2. Allane T, Benamara S (2010) Activités antioxydantes de quelques fruits communs et sauvages d’Algérie. Phytothérapie 8(3): 171–175

    Article  CAS  Google Scholar 

  3. Amarowicz R, Wanasundara U, Wanasundara J, Shahidi F (1993) Antioxidant activity of ethanolic extracts of flaxseed in a β-carotene-linoleate model system. J Food Lipid 1: 111–117

    Article  CAS  Google Scholar 

  4. Bouayed J, Rammal H, Younos C et al. (2008) Caractérisation et bioévaluation des polyphénols: nouveaux domaines d’application en santé et nutrition. Phytothérapie 6(2): 71–74

    Article  CAS  Google Scholar 

  5. Chou ST, Chao WW, Chung YC (2003) Antioxidative activity and safety of 50% ethanolic red bean extract (Phaseolus radiatus L. var. Aurea). Food Sci 68: 21–25

    Article  CAS  Google Scholar 

  6. Dewanto VX, Wu K, Adom K, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agri Food Chem 50: 3010–3014

    Article  CAS  Google Scholar 

  7. Djeridane A, Yousfi M, Nadjemi B, et al. (2006) Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds. Food Chem 97: 654–660

    Article  CAS  Google Scholar 

  8. Ebrahimzadeh MA, Pourmmorad F, Hafezi S (2008) Antioxidant activities of Iranian corn silk. Turk J Biol 32: 43–49

    CAS  Google Scholar 

  9. El-Haci IA, Atik-Bekkara F, Didi A, et al. (2012) Teneurs en polyphénols et pouvoir antioxydant d’une plante médicinale endémique du Sahara algérien. Phytothérapie 10(5): 280–285

    Article  CAS  Google Scholar 

  10. Gülçin İ, Elias R, Gepdiremen A, et al. (2009) Antioxidant secoiridoids from fringe tree (Chionanthus virginicus L.). Food Sci Technol 43: 195–212

    Google Scholar 

  11. Hambaba L, Boudjellal K, Abdeddaim M, et al. (2012) Étude in vitro des activités antimicrobienne et antioxydante des extraits du fruit d’Elaeagnus angustifolia L. Phytothérapie 10(6): 350–356

    Article  Google Scholar 

  12. Joanny Menvielle-Bourg F (2005) Superoxide Dismutase (SOD), a Powerful Antioxidant, is now available Orally. Phytothérapie 3: 1–4

    Article  Google Scholar 

  13. Klimko M, Boratynska K, Montserrat JM, et al. (2007) Morphological variation of Juniperus oxycedrus subsp. Oxycedrus (Cupressaceae) in the Mediterranean region. Flora 202: 133–147

    Article  Google Scholar 

  14. Koleva II, Teris AB, Jozef PH, et al. (2002) Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochem Anal 13: 8–17

    Article  PubMed  CAS  Google Scholar 

  15. Ksouri R, Megdiche W, Falleh H, et al. (2008) Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. Compt Rend Biol 331: 865–873

    Article  CAS  Google Scholar 

  16. Lesjak MM, Beara IN, Orcic DZ, et al. (2011) Juniperus sibirica Burgsdorf as a novel source of antioxidant and anti-inflammatory agents. Food Chem 124: 850–856

    Article  CAS  Google Scholar 

  17. Liyana-Pathirana CM, Shahidi F (2006) Antioxidant properties of commercial soft and hard winter wheats (Triticum aestivum L.) and their milling fractions. J Sci Food Agri 86: 477–485

    Article  CAS  Google Scholar 

  18. Maisuthisakul P, Pongsawatmanit R, Gordon MH (2007) Assessment of phenolic content and free-radical scavenging capacity of some Thai indigenous plants. Food Chem 100: 1409–1418

    Article  CAS  Google Scholar 

  19. Mansouri N, Satrani B, Ghanmi M, et al. (2010) Valorisation des huiles essentielles de Juniperus thurifera et de Juniperus oxycedrus du Maroc. Phytothérapie 8: 166–170

    Article  CAS  Google Scholar 

  20. Masuda T, Yonemori S, Oyama Y, et al. (1999) Evaluation of the antioxidant activity of environmental plants: Activity of the leaf extracts from seashore plants. J Agricul Food Chem 47:1749–1754

    Article  CAS  Google Scholar 

  21. Miraliakbari H, Shahidi F (2008) Antioxidant activity of minor components of tree nut oils. Food Chem 111: 421–427

    Article  CAS  Google Scholar 

  22. Orhan N, Aslan M, Demirci B, Ergun F (2012) A bioactivity guided study on the antidiabetic activity of Juniperus oxycedrus subsp. oxycedrus L. leaves. J Ethnopharmacol 140: 409–415

    Article  PubMed  Google Scholar 

  23. Orhan N, Berkkan A, Orhan DD, et al. (2011a) Effects of Juniperus oxycedrus ssp. oxycedrus on tissue lipid peroxidation, trace elements (Cu, Zn, Fe) and blood glucose levels in experimental diabetes. J Ethnopharmacol 133: 759–764

    Article  PubMed  Google Scholar 

  24. Orhan N, Orhan IE, Ergun F (2011b) Insights into cholinesterase inhibitory and antioxidant activities of five Juniperus species. Food Chem Toxicol 49: 2305–2312

    Article  PubMed  CAS  Google Scholar 

  25. Oszmianski J, Wojdylo A, Lamer-Zarawska E, Swiader K (2007) Antioxidant tannins from Rosaceae plant roots. Food Chem 100: 579–583

    Article  CAS  Google Scholar 

  26. Ouchikh O, Chahed T, Ksouri R, et al. (2011) The effects of extraction method on the measured tocopherol level and antioxidant activity of L. nobilis vegetative organs. Food Comp Anal 24: 103–110

    Article  CAS  Google Scholar 

  27. Oueslatia S, Trabelsi N, Boulaaba M, et al. (2012) Evaluation of antioxidant activities of the edible and medicinal Suaeda species and related phenolic compounds. Ind Crop Prod 36: 513–518

    Article  Google Scholar 

  28. Oyaizu M (1986) Studies on products of the browning reaction prepared from glucose amine. Jpn J Nutr 44: 307–315

    Article  CAS  Google Scholar 

  29. Ozturk M, Tumen I, Ugur A, et al. (2011) Evaluation of fruit extracts of six Turkish Juniperus species for their antioxidant, anticholinesterase and antimicrobial activities. J Sci Food Agr 91: 867–876

    Article  Google Scholar 

  30. Pil-Lim J, Song YC, Kim JW, et al. (2002) Free Radical Scavengers from the Heartwood of Juniperus chinensis. Arch Pharm Res 25: 449–452

    Article  Google Scholar 

  31. Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269: 337–341

    Article  PubMed  CAS  Google Scholar 

  32. Re R, Pellegrini N, Proteggente A, et al. (1999) Antioxidant activity applying an improved ABTS radical decolorization assay. Free Radic Biol Med 26: 1231–1237

    Article  PubMed  CAS  Google Scholar 

  33. Sanchez de Medina F, Gamez MJ, Jimenez I, et al. (1994) Hypoglycemic activity of Juniper berries. Planta Med 60: 197–200

    Article  PubMed  CAS  Google Scholar 

  34. Sun B, Richardo-da-Silvia JM, Spranger I (1998) Critical factors of vanillin assay for catechins and proanthocyanidins. J Agri Food Chem 46: 4267–4274

    Article  CAS  Google Scholar 

  35. Tavares L, McDougall GJ, Fortalezas S, et al. (2012) The neuroprotective potential of phenolic-enriched fractions from four Juniperus species found in Portugal. Food Chem 135: 562–570

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Chaouche.

About this article

Cite this article

Chaouche, T.M., Haddouchi, F., Ksouri, R. et al. In vitro evaluation of antioxidant activity of the hydro-methanolic extracts of Juniperus oxycedrus subsp. oxycedrus . Phytothérapie 11, 244–249 (2013). https://doi.org/10.1007/s10298-013-0779-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10298-013-0779-5

Keywords

Mots clés