Skip to main content
Log in

Prébiotiques, flore intestinale, inflammation, obésité

Prebiotics, intestinal flora, inflammation, obesity

  • Article de Synthèse
  • Nutrithérapie
  • Published:
Phytothérapie

Résumé

L’obésité est une préoccupation croissante dans le monde. On en connaît les principaux déterminants, accroissement de l’offre alimentaire et sédentarité, en interaction avec des facteurs génétiques. Mais des voies de recherche nouvelles faisant intervenir le rôle du microbiote intestinal permettent d’ouvrir de nouveaux horizons. Des études chez l’animal ont montré que le transfert de la microflore de souris obèses à des souris axéniques (sans flore) minces rendait ces dernières obèses. Cet article permet de faire le point sur les données expérimentales, chez l’animal, et les études chez l’homme permettant d’étayer le rôle de la composition du microbiote intestinal. Les mécanismes invoqués sont multiples: une rétention d’énergie au niveau intestinal à partir de la fermentation colique des fibres indigestibles est le premier mécanisme invoqué. Cette fermentation module aussi la production de GLP1, une entérohormone anorexigène, insulinotrope et ralentissant la vidange gastrique. Surtout le rôle du transfert du lipopolysaccharide (LPS) microbien à travers la paroi intestinale rendue perméable (par altération des jonctions serrées) et incorporé dans les chylomicrons lors d’un repas gras apparaît important. Ce LPS, d’une part, accroît le tonus endocannabinoïde impliqué dans la lipogenèse et, d’autre part, se lie aux récepteurs toll-like 4 (TLR4) et CD14 pour induire une production de cytokines inflammatoires contribuant à l’inflammation de bas grade de l’obésité et à l’insulinorésistance. Non seulement des « manipulations » diététiques au niveau des pré- et probiotiques semblent des voies intéressantes dans la prise en charge de l’obésité mais des voies de prévention s’ouvrent puisque l’on sait que l’accouchement par voie basse d’une part et l’allaitement maternel d’autre part, deux « modes de vie» à la baisse, modulent très précocement et a priori dans un sens favorable la composition de la microflore.

Abstract

Obesity is an heavy burden in the world; the causes of its occurrence are multiple: food availability, sedentarity are the main factors but perhaps cannot explain the growing epidemy. Obesity is an adipose-tissue disease characterized by a triglycerides storage in adipocytes and a peripheral low-grade inflammation coming from the periadipocytes stroma. Microflora could play an important role in the genesis of weight gain. It has been shown that the transfer of the microflora from obese mices to axenic lean mices induces obesity in lean mices, whereas suppression of the microflora prevents obesity. Microflora could act through many mechanisms: first through an energy retention on intestine level. An other mechanism is due to the colonic fermentation with a modulation of the short chain fatty acids production; it may also alter the production of GLP1, an anorexic and insulinotropic entero-hormone, by intestinal L cells. Mainly it is now known that in post-prandial state, after a high-fat meal, the post-prandial lipemia is associated to a low-grade inflammation, parallel to the passage of bacterial lipopolysaccharide (LPS) in the circulation. LPS is accompanied with an increase of gut permeability and of endocannabinoid tone implied in lipogenesis, particularly abdominal adiposity. Further researches are needed in order to have a better understanding of the role of diet and microflora on obesity incidence and its complications. Clinical interventions studies will be also determinant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Amar J, Burcelin R, Ruidavets JB, et al. (2008) Energy intake is associated with endotoxemia in apparently healthy men. Am J Clin Nutr 87: 1219–1223

    PubMed  CAS  Google Scholar 

  2. Bäckhed F, Ding H, Wang T, et al. (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101:15718–15723

    Article  PubMed  Google Scholar 

  3. Bäckhed F, Ley RE, Sonnenburg JL, et al. (2005) Host-bacterial mutualism in the human intestine. Science 307: 1915–1920

    Article  PubMed  Google Scholar 

  4. Bäckhed F, Manchester JK, Semenkovich CF, et al. (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 104: 979–984

    Article  PubMed  Google Scholar 

  5. Bellido C, López-Miranda J, Blanco-Colio LM, et al. (2004) Butter and walnuts, but not olive oil, elicit postprandial activation of nuclear transcription factor kappab in peripheral blood mononuclear cells from healthy men. Am J Clin Nutr 80: 1487–1491

    PubMed  CAS  Google Scholar 

  6. Blanco-Colio LM, Valderrama M, Alvarez-Sala LA, et al. (2000) Red wine intake prevents nuclear factor-kappab activation in peripheral blood mononuclear cells of healthy volunteers during postprandial lipemia. Circulation 102: 1020–1026

    PubMed  CAS  Google Scholar 

  7. Cani PD, Bibiloni R, Knauf C, et al. (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57: 1470–1481

    Article  PubMed  CAS  Google Scholar 

  8. Cani PD, Lecourt E, Dewulf EM, et al. (2009) Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr 90: 1236–1243

    Article  PubMed  CAS  Google Scholar 

  9. Cani PD, Neyrinck AM, Fava F, et al. (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50: 2374–2383

    Article  PubMed  CAS  Google Scholar 

  10. Collado MC, Isolauri E, Laitinen K, et al. (2008) Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr 88: 894–899

    PubMed  CAS  Google Scholar 

  11. Collado MC, Isolauri E, Laitinen K, et al. (2010) Effect of mother’s weight on infant’s microbiota acquisition, composition, and activity during early infancy: a prospective follow-up study initiated in early pregnancy. Am J Clin Nutr 92: 1023–1030

    Article  PubMed  CAS  Google Scholar 

  12. Coppa GV, Bruni S, Morelli L, et al. (2004) The first prebiotics in humans: human milk oligosaccharides. J Clin Gastroenterol 38: S80–S3

    Article  PubMed  CAS  Google Scholar 

  13. Delzenne NM, Cani PD (2008) Gut microflora is a key player in host energy homeostasis. Med Sci 24: 505–510

    Google Scholar 

  14. DiBaise JK, Zhang H, Crowell MD, et al. (2008) Gut microbiota and its possible relationship with obesity. Mayo Clin Proc 83: 460–469

    Article  PubMed  Google Scholar 

  15. Duncan SH, Lobley GE, Holtrop G, et al. (2008) Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes 32: 1720–1724

    Article  CAS  Google Scholar 

  16. Deveaux V, Cadoudal T, Ichigotani Y, et al. (2009) Cannabinoid CB2 receptor potentiates obesity-associated inflammation, insulin resistance and hepatic steatosis. PLoS One 4: e5844

    Article  PubMed  Google Scholar 

  17. Erridge C, Attina T, Spickett CM, et al. (2007) A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr 86: 1286–1292

    PubMed  CAS  Google Scholar 

  18. Ford E (2005) The epidemiology of obesity and asthma. J Allergy Clin Immunol 115: 897–909

    Article  PubMed  Google Scholar 

  19. Ghanim H, Sia CL, Upadhyay M, et al. (2010) Orange juice neutralizes the proinflammatory effect of a high-fat, high-carbohydrate meal and prevents endotoxin increase and toll-like receptor expression. Am J Clin Nutr 91: 940–949

    Article  PubMed  CAS  Google Scholar 

  20. Grönlund MM, Lehtonen OP, Eerola E, et al. (1999) Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J Pediatr Gastroenterol Nutr 28: 19–25

    Article  PubMed  Google Scholar 

  21. Jiménez E, Delgado S, Maldonado A, et al. (2008) Staphylococcusepidermidis: a differential trait of the fecal microbiota of breast-fed infants. BMC Microbiol 8: 143

    Article  PubMed  Google Scholar 

  22. Kadooka Y, Sato M, Imaizumi K, et al. (2010) Regulation of abdominal adiposity by probiotics (Lactobacillusgasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur J Clin Nutr 64: 636–643

    Article  PubMed  CAS  Google Scholar 

  23. Kalliomäki M, Collado MC, Salminen S, et al. (2008) Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 87: 534–538

    PubMed  Google Scholar 

  24. Lecerf JM, Depeint F, Clerc E, et al. (2011) Xylooligosaccharides fed alone or in combination with inulin modulate the intestinal environment and immune status in healthy subjects. Am J Clin Nutr (submitted)

  25. Ley RE, Turnbaugh PJ, Klein S, et al. (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444: 1022–1023

    Article  PubMed  CAS  Google Scholar 

  26. Lundequist B, Nord CE, Winberg J (1985) The composition of the faecal microflora in breastfed and bottle fed infants from birth to eight weeks. Acta Paediatr Scand 74: 45–51

    Article  PubMed  CAS  Google Scholar 

  27. Michelson K, Wong M, Shaph P (2004) Lack of toll-like receptor 4 or myeloid differntiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein e. Proc Natl Acad Sci U S A 101: 10679–10684

    Article  Google Scholar 

  28. Moreno-Navarrete JM, Manco M, Ibáñez J, et al. (2010) Metabolic endotoxemia and saturated fat contribute to circulating NGAL concentrations in subjects with insulin resistance. Int J Obes 34: 240–249

    Article  CAS  Google Scholar 

  29. Muccioli GG, Naslain D, Bäckhed F, et al. (2010) The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol 6: 392

    Article  PubMed  Google Scholar 

  30. Nadal I, Santacruz A, Marcos A, et al. (2009) Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents. Int J Obes 33: 758–767

    Article  CAS  Google Scholar 

  31. Nappo F, Esposito K, Cioffi M, et al. (2002) Postprandial endothelial activation in healthy subjects and in type 2 diabetic patients: role of fat and carbohydrate meals. J Am Coll Cardiol 39: 1145–1150

    Article  PubMed  CAS  Google Scholar 

  32. Neyrinck AM, Delzenne NM (2010) Potential interest of gut microbial changes induced by non-digestible carbohydrates of wheat in the management of obesity and related disorders. Curr Opin Clin Nutr Metab Care 13: 722–728

    Article  PubMed  CAS  Google Scholar 

  33. Roberfroid M, Gibson GR, Hoyles L, et al. (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104(Suppl 2): S1–S63

    Article  PubMed  CAS  Google Scholar 

  34. Samuel BS, Shaito A, Motoike T, et al. (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding g protein-coupled receptor, gpr41. Proc Natl Acad Sci U S A 105: 16767–16772

    Article  PubMed  CAS  Google Scholar 

  35. Turnbaugh PJ, Bäckhed F, Fulton L, et al. (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3: 213–223

    Article  PubMed  CAS  Google Scholar 

  36. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. (2009) A core gut microbiome in obese and lean twins. Nature 457: 480–484

    Article  PubMed  CAS  Google Scholar 

  37. Turnbaugh PJ, Ley RE, Mahowald MA, et al. (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444: 1027–1031

    Article  PubMed  Google Scholar 

  38. van Oostrom AJHHM, Rabelink TJ, Verseyden C, et al. (2004) Activation of leukocytes by postprandial lipemia in healthy volunteers. Atherosclerosis 177: 175–182

    Article  PubMed  Google Scholar 

  39. van Wijk JPH, Cabezas MC, Coll B, et al. (2006) Effects of rosiglitazone on postprandial leukocytes and cytokines in type 2 diabetes. Atherosclerosis 186: 152–159

    Article  PubMed  Google Scholar 

  40. Vijay-Kumar M, Aitken JD, Carvalho FA, et al. (2010) Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science 328: 228–231

    Article  PubMed  CAS  Google Scholar 

  41. Visness CM, London SJ, Daniels JL, et al. (2009) Association of obesity with IgE levels and allergy symptoms in children and adolescents: results from the national health and nutrition examination survey 2005–2006. J Allergy Clin Immunol 123: 1163–1169, 1169.e1–4

    Article  PubMed  CAS  Google Scholar 

  42. Volman JJ, Mensink RP, van Griensven LJLD, et al. (2010) Effects of alpha-glucans from agaricus bisporus on ex vivo cytokine production by LPS and PHA-stimulated PBMCs; a placebo-controlled study in slightly hypercholesterolemic subjects. Eur J Clin Nutr 64: 720–726

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. -M. Lecerf.

About this article

Cite this article

Lecerf, J.M. Prébiotiques, flore intestinale, inflammation, obésité. Phytothérapie 9, 106–112 (2011). https://doi.org/10.1007/s10298-011-0619-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10298-011-0619-4

Mots clés

Keywords

Navigation