Phytothérapie

, Volume 9, Issue 1, pp 18–24 | Cite as

Composition chimique et bioactivité des huiles essentielles de deux provenances d’Ocimum canum S. de l’île de la Grande Comore

  • S. O. S. Hassane
  • M. Ghanmi
  • B. Satrani
  • A. Farah
  • F. Amarti
  • S. M. Achmet
  • A. Chaouch
Article Original Pharmacologie

Résumé

Ce travail vise l’étude de l’activité antifongique et antibactérienne et la composition chimique de deux lots d’huiles essentielles d’Ocimum canum Sims, récoltées dans deux régions de l’île de la Grande Comore: Maweni-Dimani et Ivoini-Mitsamihouli. Le rendement en huile essentielle d’Ocimum canum de Maweni-Dimani (2,06%) est supérieur à celui de d’Ivoini-Mitsamihouli (1,4%). La première provenance présente le 1,8-cinéole (48,88 %), le camphre (14,98%), l’α-pinène (5,71%), β-pinène (4,66%) et γ-élémène (3,91%) comme constituants majoritaires. L’huile essentielle d’Ocimum canum de provenance d’Ivoini-Mitsamihouli est constituée majoritairement par le 1,8-cinéole (34,22%), le camphre (13,69%), le propanoate d’isopropyle (9,13%), le γ-élémène (5,43%) et l’α-pinène (3,83%). Les tests biologiques ont montré que les huiles essentielles des deux provenances sont actives contre tous les micro-organismes testés.

Mots clés

Ocimum canum Sims Huiles essentielles Composition chimique Activité antibactérienne et antifongique 

Chemical composition and bioactivity of essential oils from two provenances d’Ocimum canum S. of Grande Comore

Abstract

This work aims to study of antibacterial and antifungical activities and chemical composition of essential oils of Ocimum canum Sims, harvested in the regions of Maweni-Dimani and Ivoini-Mitsamihouli on the island of Grande Comore. The yields of essential oil showed that Ocimum canum from Maweni-Dimani (2.06%) is higher than for Ivoini-Mitsamihouli (1.4%). The first one essential oil presents 1,8-cineole (48.88%), camphor (14.98%), α-pinene (5.71%), β-pinene (4.66%) and γ-elemene (3.91%) as predominate constituents. The second sample is mainly composed by 1,8-cineole (34.22%), camphor (13.69%), isopropyl propanoate (9.13%), γ-elemene (5.43%) and α-pinene (3.83%). The antimicrobial activity of two essential oils of two sources has been studied against eleven microorganisms. The essential oil of Ivoini-Mitsamihouli inhibits bacteria, fungus and mildews particularly at low concentrations compared to that of Maweni-Dimani.

Keywords

Ocimum canum Sims Essential oils Chemical composition Antibacterial and antifungical activities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. 1.
    Adams RP (1995) Identification of essential oil components by gas chromatography, mass spectroscopy. Allured 302Google Scholar
  2. 2.
    Adjanohoun EJ, Aké Assi L, Ali A, et al. (1982) Contribution aux études ethnobotaniques et floristiques aux Comores (1989). Rapport présenté à l’ACCT ISBN 92-9028-038-7Google Scholar
  3. 3.
    Albuguerque UP (1996) de Taxonomia e ethnobotânica gênero Ocimum L. Nordeste Brasil-renfêrencia especial para Pernambuco Recife Dissertaçao, centro de ciencias biolögias, univ Fed de Pernambuco. Masterado 125pGoogle Scholar
  4. 4.
    Alfa KD, Abdoul DS, Mouhoussine N, et al. (2004) Composition chimique de l’huile essentielle d’Ocimum americanium Lin.,Syn. Ocimum canum Sims. Compt rend chim 7: 1033–1037CrossRefGoogle Scholar
  5. 5.
    Amvam Zollo PH, Biyiti L, Tchoumbougnang F, et al. (1988) Aromatic plants of tropical central Africa, Part xxxii Aromatic plants of tropical central Africa, Part xxxii: chemical composition and antifungal activity of thirteen essential oils from aromatic plant of Cameroon. Flav Fragr J 13: 107–114CrossRefGoogle Scholar
  6. 6.
    Angers P, Morales MR, Simon JE (1996) Fatty acid variation in seed oil among Ocimum species. J Am Oil Chem Soc 73: 393–395CrossRefGoogle Scholar
  7. 7.
    Anton R, Lobstein A (2005) Plantes aromatiques. Épices, aromates, condiments et huiles essentielles. Tec & Doc, Paris, 522 pGoogle Scholar
  8. 8.
    Bassole Nebie R, Savadogo A, Ouattara CT, et al. (2005) Composition and antimicrobial activities of the leaf and flower essential oils of Lippia chevalieri and Ocimum canum from Burkina Faso. Afri J Biotech 4(10): 1156–1160Google Scholar
  9. 9.
    Benjilali BA, Tnanatoui-Elaraki, Ayadi A, Ihlal M (1984) Method to study antimicrobial effects of essential oils: application to fungical activity of six Moroccan essences. J Food Proto 47: 748–752Google Scholar
  10. 10.
    Berhaut J (1967) Flore du Sénégal. 2e ed. Clairafrique éd, Dakar, Sénégal 485Google Scholar
  11. 11.
    Berhaut J (1975) Flore illustrée du Sénégal (4) Clairafrique ed., Dakar, Sénégal 625Google Scholar
  12. 12.
    Boira H, Blanquer A (1997) Environmental factors affecting chemical variability of essential oils in Thymus piperella L. Biochem. Syst Ecol 26: 811–822CrossRefGoogle Scholar
  13. 13.
    Bouchikhi T (1994) Activité antimicrobienne de quelques huiles essentielles. Thèse de doctorat d’État. Université Blaise-Pascal, Clermont-Ferrand, 132 pGoogle Scholar
  14. 14.
    Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods. Int J Food Microbiol 94: 223–253PubMedCrossRefGoogle Scholar
  15. 15.
    Chagonda LS, Makanda CD, Chalchat JC (2000) The essential oils of Ocimum canum Sims (basilic camphor) and Ocimum urticifolia Rothfrom Zimbabwe. Flav Fragr J 15: 23–26CrossRefGoogle Scholar
  16. 16.
    Chalchat JC, Garry RP, Sidibe L (1996) Aromatic plants of Mali. Ocimum basilicum and Ocimum canum Sims. Riv Ital EPPOS 7 (spec. Num.): 618–626Google Scholar
  17. 17.
    Chalchat JC, Garry RP, Sidibe L, et al. (1999) Aromatic plants of Mali (II): chemical composition of oil of Ocimum canum Sims. J Essent Oil Res 11: 473–476Google Scholar
  18. 18.
    Clevenger JF (1928) Apparatus for the determination of volatile oil. J Am Pharm Assoc 17(4): 346–351Google Scholar
  19. 19.
    CNDRS (1992–l993) Quelques données sur la flore endémique des Comores. L’herbier nationalGoogle Scholar
  20. 20.
    Cura do MA, Olieira CBA, Jesus JG, et al. (2006) Environmental factors influence on chemical polymorphism of the essential oils of Lychnophora ericoides. Phytochemistry 67: 2363–2369CrossRefGoogle Scholar
  21. 21.
    DGE (2000) Stratégie nationale et plan d’action pour la conservation de la diversité biologique en RFI des Comores du Projet Pnud/FEM/COI/97/GEF 31: 39–40Google Scholar
  22. 22.
    DGE-MPARME (1999) Rapport intermédiaire sur l’élaboration d’une stratégie nationale et d’un plan d’action en matière de biologie en RFI des ComoresGoogle Scholar
  23. 23.
    Edmond D, Hladik A, Hladik CM (1996) De la ressource disponible à la ressource exploitée: méthodes de quantification des ressources alimentaires dans les régions forestières et les savanes du Cameroun. In: Froment A, de Garine I, Binam Bikoi CH et Loung JF (eds) Bien manger et bien vivre. Anthropologie alimentaire et développement en Afrique intertropicale: du biologique au social. L’Harmattan, Orstom, Paris, 55–66Google Scholar
  24. 24.
    Ekundayo O, Laakso I, Hiltunen R (1989) Constituents of the volatile oil from leaves of Ocimum canum Sims. Flav Fragr J 4: 17–18CrossRefGoogle Scholar
  25. 25.
    Faid M, Charal M, Mosaddak M (1996) Chemical composition and antimicrobial activities of two aromatic plants: Origanum majorana L and Origanum compactum Benth. J Essent Oil Res 8: 57–664Google Scholar
  26. 26.
    Felice S, Fransesco N, Nelly AA, et al. (2004) Composition and antimicrobial activity of the essential oil of Achillea falcalata L. Flav Fragr J 20(3): 291–294Google Scholar
  27. 27.
    Franchomme P (1981) L’aromatologie à visée anti-infectieuse. Phytomédecine 1–2: 25–47Google Scholar
  28. 28.
    Goretti M, Silva V, Vieira IG, et al. (2008) Variation of ursolic acid content in eight Ocimum species from Northeastern Brazil. Molecules 13: 2482–2487CrossRefGoogle Scholar
  29. 29.
    Gueldener RC, Wilson DM, Heidt A (1985) Volatile compounds inhibiting Aspergillus’s flavus. J Agri Food 33: 413–419CrossRefGoogle Scholar
  30. 30.
    Gunther E (1949) The essential oils (3). D Van Nostrand Company Inc, New-York 777Google Scholar
  31. 31.
    Gunther E (1974) Essential oils; individual essential oils plants families Ruteaceae and Labiaceae, VIII Ed 410Google Scholar
  32. 32.
    Hutchinson J, Dalziel JM, Keay RWJ, et al. (1963) Flora of West Tropical Africa. (2). 2nd ed. The Whitefriars Press ed., London & Tonbridge 544Google Scholar
  33. 33.
    Kaou AM, Mahiou-Leddet V, Hutter S, et al. (2008) Antimalarial activity of crude extracts from nine African medicinal plants. J Ethnopharmacol 116(4): 74–83PubMedCrossRefGoogle Scholar
  34. 34.
    Karaman S, Digrak M, Ravid U, et al. (2001) Antibacerial and antifungical activity of the essential oil of Thymus revolutus Celak. From Turky. J Ethnopharmacol 76: 183–186PubMedCrossRefGoogle Scholar
  35. 35.
    Kivanç M, Akgûl A (1986) Antibacterial activities of essential oils from Turkish species and Citrus. Flav Fragr J 1: 175–179CrossRefGoogle Scholar
  36. 36.
    Oussou Kouamé R, Youlou S, Boti JB, et al. (2008) Étude chimique et activité antidiarrhéique des huiles essentielles de deux plantes aromatiques de la pharmacopée ivoirienne. Eur J Scient Res l-24(1): 94–103Google Scholar
  37. 37.
    Kurita N, Koike S (1982) Synergetic antimicrobial effect of sodium chloride and essential oils components. Agric Bio Chem 46: 159–165Google Scholar
  38. 38.
    Lahlou M (2004) Methods to study the phytochemistry and bioactivity of essential oils. Phytother Res 18: 435–448PubMedCrossRefGoogle Scholar
  39. 39.
    Lawrence BM, Powel RH, Peele DM (1980) Variation in the genus Ocimum. Proceeding of the Eighth International Congress on Essential Oils. FEDAROM, Grasse, France 109–117Google Scholar
  40. 40.
    Lee KH, Ibuka T, Wur Y, Geissman TA (1985) Structure-antimicrobial activity relationships among the sesquiterpenes lactones and related compounds. Phytochemistry 16: 1171–1181Google Scholar
  41. 41.
    Lucchesi ME (2005) L’extraction sans solvant assistée par micro-ondes: application à l’extraction des huiles essentielles: faculté des sciences et technologies, université de la Réunion, Thèse, 147 pGoogle Scholar
  42. 42.
    Malecky M (2007) Métabolisme des terpénoïdes chez les caprins, institut des sciences et industries du vivant et de l’environnement (AgroParisTech), Thèse, 205 pGoogle Scholar
  43. 43.
    Martins AP, Salgueiro L, Vila R, et al. (1999) Composition of the essential oil of Ocimum canum, Ocimum gratissimum and Ocimum minimum. Plant Med 65: 187–189CrossRefGoogle Scholar
  44. 44.
    Monjoin M (1981) Possibilité d’utiliser la médecine traditionnelle pour améliorer les soins de santé primaire aux Comores. Université de Bordeaux-II, Thèse, 340 pGoogle Scholar
  45. 45.
    Morales MR, Simon JE (1996) New basil selections with compact inflorescence for the ornamental market. In: Janick J (ed) Progress in new crops. ASHS Press, Alexandria, VA, 543–546Google Scholar
  46. 46.
    Morales MR, Simon JE (1997) Sweet Dani: a new culinary and ornemental lemon basil. Hort Sci 32: 148–149Google Scholar
  47. 47.
    Obeng-Ofori D, Reichmuth CH, Bekele J, et al. (1997) Biological activity of 1,8 cineole, a major component of essential oil of Ocimum kenyense (Ayobeingira) against stored product beetles. J Appt Ent 121: 237–243CrossRefGoogle Scholar
  48. 48.
    Paton A (1992) A synopsis of Ocimum L (Labiatae). Afri Kew Bul 47: 403–435CrossRefGoogle Scholar
  49. 49.
    Prates HT, Santos JP, Waquil JM, et al. (1998) Foster JE Insecticidal activity of monoterpenes against Rhyzopertha dominica F. and Tribolium castaneum H. J Stored Prod Res 34: 243–249CrossRefGoogle Scholar
  50. 50.
    Rajeswara Rao BR (2002) Biomass yield, essential oil yield and essential oil composition of rose-scented geranium (Pelargonium species) as influenced by row spacings and intercropping with cornmint (Mentha arvens is, Mentha piperascens Malinv. Ex Holmes). Ind Crops Prod 16: 133–144CrossRefGoogle Scholar
  51. 51.
    Rajeswara Rao BR, Kaul PN, Mallavarapu GR, et al. (1996) Effect of seasonal climatic changes on biomass yield and terpenoid composition of rosescented geranium. Biochem Syst Ecol 24: 627–635CrossRefGoogle Scholar
  52. 52.
    Randrianalijaona JA, Ramanoelina PAR, Rasoarahona JRE, et al. (2005) Seasonal and chemotype influences on the chemical composition of Lantana camara L. essential oils from Madagascar. Ann Chim Acta 545: 46–52CrossRefGoogle Scholar
  53. 53.
    Remmal A, Bouchikhi T, Rhayour K, et al. (1993) Improved method for determination of antimicrobial activity of essential oils in agar medium. J Ess Oil Res 5(2): 179–184Google Scholar
  54. 54.
    Sanda K, Koffi K, Nambo PH, Gaset A (1998) Chemical investigation of Ocimum species growing in Togo. Flav Fragr J 13(4): 226–232CrossRefGoogle Scholar
  55. 55.
    Satrani B, Aberchane M, Farah A, Chaouch A, et al. (2006) Composition chimique et activité antimicrobienne des huiles essentielles extraites par hydrodistillation fractionnée du bois de Cedrus atlantica Manetti. Act Bot Galla 153(1): 97–104Google Scholar
  56. 56.
    Satrani B, Farah A, Fechtal M, Talbi M, et al. (2001) Composition chimique et activité antimicrobienne des huiles essentielles de Satureja calamintha et Satureja alpina du Maroc. Ann Fals Exp Chim 94(956): 241–250Google Scholar
  57. 57.
    Smirnov V, Bondarenko AS, Prikhodkov VA (1998) Antimicrobial activity of sesquiterpene phenol from Bidens cernua. Fitoterapia 69(1): 7–12, 84–5Google Scholar
  58. 58.
    Stewart WW, Topul Rali, David N Leach (2008) Volatile chemical constituents of three Ocimum species (Lamiaceae). South Pacific J Nat Sci 26: 25CrossRefGoogle Scholar
  59. 59.
    Tchoumbougnang F, Zollo PH, Dagne E, Mekonnen Y (2005) In vivo antimalarial activity of essential oils from Cymbopogon citratus and Ocimum gratissimum on mice infected with Plasmodium berghei. Planta Med 71: 20–23PubMedCrossRefGoogle Scholar
  60. 60.
    Tchoumbougnang F, Dongmo PMJ, Sameza ML, et al. (2009) Activité larvicide sur Anopheles gambiae Giles et composition chimique des huiles essentielles extraites de quatre plantes cultivées au Cameroun. Biotech Agro Soc Env 13(1): 77–84Google Scholar
  61. 61.
    Yayi E, Moudachirou M, Chalchat JC (2001) Chemotyping of three Ocimum species from Benin. Ocimum basilicum, Ocimum canum, Ocimum gratissimum. J Essent Oil Res 13: 13–17Google Scholar

Copyright information

© Springer Verlag 2011

Authors and Affiliations

  • S. O. S. Hassane
    • 1
    • 4
    • 5
  • M. Ghanmi
    • 2
  • B. Satrani
    • 2
  • A. Farah
    • 3
  • F. Amarti
    • 1
  • S. M. Achmet
    • 5
  • A. Chaouch
    • 1
  1. 1.Laboratoire de biotechnologie, environnement et qualité, UFR des génies des procédés, faculté des sciencesuniversité Ibn-TofailKenitraMaroc
  2. 2.Centre de recherche forestièreRabat AgdalMaroc
  3. 3.Institut nationale des plantes aromatiques et médicinales taounateuniversité Sidi-Mohamed Ben-AbdallahTaounate principaleMaroc
  4. 4.Faculté des sciences et techniquesuniversité des ComoresMoroniComores
  5. 5.Laboratoire de contrôle qualité, maison des épicesEx CefaderMoroniComores

Personalised recommendations