Skip to main content
Log in

Effets pharmacodynamiques d’un extrait hydroalcoolique de Curcuma longa Linné (Zingiberaceae) sur le système cardiovasculaire, la respiration et l’activité mécanique intestinale de mammifères

Pharmacodynamic effects of a hydroalcoholic extract of Curcumalonga Linné (Zingiberaceae) on the cardiovascular system, respiratory activity and mechanical activity of duodenal strips of mammalians

  • Article Original
  • Pharmocognosie
  • Published:
Phytothérapie

Résumé

L’étude des effets pharmacologiques d’un extrait hydroalcoolique de Curcuma longa Linné (Zingiberaceae) [Cl] sur la pression artérielle couplée à la respiration du lapin dans un intervalle de concentrations compris entre 5,5 × 10−4 et 4,4 × 10−2 g/kg de PC montre que cette substance d’origine végétale induit des effets hypotenseurs dose-dépendants. Ces effets s’accompagnent d’une augmentation de la fréquence et d’une diminution de l’amplitude respiratoire. Dans un intervalle de concentrations compris entre 10−6 et 10−3 mg/ml, ce même extrait provoque des effets inotrope et chronotrope négatifs dose-dépendants sur le coeur isolé de rat. Par ailleurs, il induit une forte diminution dose-dépendante des contractions rythmiques du duodénum isolé du lapin à des concentrations comprises entre 2 × 10−2 et 1,2 × 10−1 mg/ml. Ces effets négatifs de l’extrait hydroalcoolique de cette espèce végétale rappellent les effets bien connus des antagonistes calciques. Afin de comprendre le mécanisme d’action des substances contenues dans cet extrait, nous avons comparé les interactions entre acétylcholine (ACH)-Cl et ACH-atropine (ATR) et chlorure de baryum (BaCl2)-ATR-Cl pour trois concentrations différentes de BaCl2. La présence de substances anticalciques dans l’extrait hydroalcoolique de cette plante est confirmée par le fait que, contrairement à l’ATR qui est un inhibiteur compétitif des récepteurs cholinergiques muscariniques, Cl inhibe les effets inotropes positifs induits par le BaCl2 qui est un stimulateur de la motilité intestinale comparable au calcium. L’augmentation du rythme respiratoire du lapin induit par l’extrait brut de Curcuma longa pourrait être due à l’existence dans cet extrait de substances autres que les substances anticalciques.

Abstract

The pharmacological effects of a hydroalcoholic extract of Curcuma longa Linné (Zingiberaceae) [Cl] were studied on blood pressure coupled to respiratory activity of rabbit in concentration ranging from 5,5 × 10−4 to 4,4 × 10−2 g/kg of b.w. showed that this vegetal extract induced dose-dependent hypotension effect. These effects were accompanied by a increase of frequency and decrease of respiratory range. At the concentrations ranging from 10−6 to 10−3 mg/ml, this same extract induced dose-dependent negative inotropic and chronotropic effects on the heart isolated from rat. Moreover, it induced a significant dose-dependent decrease of the rhythmical contractions of the isolated duodenal from rabbit at the concentrations ranging 2 × 10−2 to 1,2 × 10−1 mg/ml. The negative effects caused by this vegetable specie recalled those of calcium channel blockers. Therefore, the interaction ACH-Cl and ACH-ATR on the one hand and BaCl2-ATR-Cl on the other hand were achieved to understand the action mechanism of the substances contained in the extract. Unlike atropine, a muscarinic cholinoceptors, Cl inhibited the positive inotropic effects induced by barium chloride, a stimultor of intestinal motility similar to calcium. It was then suggested that Cl could act like calcium channel inhibitors. Finally, the increase in the respiratory rhythm of rabbit induced by Curcuma longa could be due to the presence of other substances different to calcium channel blockers in Cl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliographie

  1. Aggarwal BB, Sundaram C, Malani N, Ichikawa H (2007) Curcumin: the Indian solid gold. Adv Exp Med Biol 595: 1–75

    Article  PubMed  Google Scholar 

  2. Ammon HPT, Wahl MA (1991) Pharmacology of Curcumalonga. Planta Med 57: 1–7

    Article  PubMed  CAS  Google Scholar 

  3. Barthelemy S, Vergnes L, Moynier M, et al. (1998) Curcumin and curcumin derivatives inhibittat-mediated transactivation of type 1 human immunodeficiency virus long terminal repeat. Res Virol (Paris) 149: 43–52

    CAS  Google Scholar 

  4. Bharat BA, Bokyung S (2009) Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci 30(2): 85–94

    Article  Google Scholar 

  5. Bharat BA, kuzhuvelil BH (2009) Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 41(1): 40–59

    Article  Google Scholar 

  6. Boullard B (2001) Plantes médicinales du monde: réalités et croyances, p 174. Ed. Estem, 636 p

  7. Bruneton J (1995) Pharmacognosy, phytochemistry, medicinal plants. Lavoisier publishing, Paris

    Google Scholar 

  8. But PPH (1997) International collation of traditional and folk medicine. World Scientific, Singapore, pp 207–208

    Google Scholar 

  9. Chainani WW (2003) Activité anti-inflammatoire de la curcumine, un composant du safran des Indes (Curcumalonga). Complement Med J altern 9(1): 161–168

    Article  Google Scholar 

  10. Charles V, Charles SX (1992) the use and efficacy of Zzadiachtaindica ADR (’neem’) and Curcuma longa (’turmeric’) in scabies: a pilot study. Trop geogr med 44(1–2): 178–178

    PubMed  CAS  Google Scholar 

  11. Chattopadhyay I, Biswas k, Bandyopadhyay U, Banerjee Rk (2004) Turmeric and curcumin: biological actions and medicinal applications. Curr Sci 87: 44–50

    CAS  Google Scholar 

  12. Crankshaw DJ, Janis RA, Daniel EE (1977) The effects of Ca2+ antagonists on Ca2+ accumulation by subcellular fraction of rat myotrium. Can J Physicien Pharmacol 55: 1028–1032

    CAS  Google Scholar 

  13. Çikrikçi S, Mozioğlu E, Yilmaz H (2008) Biological activity of curcuminoids isolated from Curcumalonga. Rec Nat Prod 2(1): 19–24

    Google Scholar 

  14. Facheux C, Asaah E, Mpeck N, Zac T (2003) Studing markets to identify medicinal species for domestication: the case of annickiachlorantha in Cameroon. Herbalgram J Am Bot Counc 60: 38–46

    Google Scholar 

  15. Gamal A (2009) Immunomodulatory effects of curcumin treatment on murine Schistosomiasismansoni. Immunobiology 214(8): 712–727

    Article  Google Scholar 

  16. Gerova M, Kristek F, Cacanyiova S, Cebova M (2005) Acetylcholine and bradykinin enhance hypotension and affect the function of remodeled conduit arteries in SHR and SHR treated with nitric oxide donors. Braz J Med Biol Res 38: 959–966

    Article  PubMed  CAS  Google Scholar 

  17. Gonda R, Tomoda M, Ohara N, Takada K (1993) Arabinogalactan core structure and immunological activities of Ukonan C, an acidic polysaccharide from the rhizome of Curcumalonga. Biol Pharm Bull 16(3): 235–238

    PubMed  CAS  Google Scholar 

  18. Goto H, Sasaki Y, Fushimi H, et al. (2005) Effect of Curcuma herbs on vasomotion and hemorheology in spontaneously hypertensive Rat. Am J Chin Med 33(3): 449–457

    Article  PubMed  Google Scholar 

  19. Gupta AP, Gupta MM, Kumar S (1999) Simultaneous determination of curcuminoids in curcuma samples using high performance thin layer chromatography. J Liq Chromatogr Rel Technol 22: 1561–1569

    Article  CAS  Google Scholar 

  20. Han S, Yang Y (2005) Antimicrobial activity of wool fabric treated with curcumin. Dyes Pigm 64: 157–161

    Article  CAS  Google Scholar 

  21. Hauhouot-Attoungbre ML, Monnet D, Odi A, Yapo AE (1997) Impact biologique et clinique de la thérapie antihypertensive chez l’Ivoirien hypertendu: étude comparative de quelques antihypertenseurs prescrits en monothérapie. Afr Biomed 2(2): 11–16

    Google Scholar 

  22. Hondeghem LM, Katzung BG (1984) Antiarrhythmic agents: the modulated receptor mechanism of action of sodium and calcium channel-blocking drugs. Ann Rev Pharmacol 24: 387–423

    Article  CAS  Google Scholar 

  23. Huber I, Wappl E, Herzog A, et al. (2000) Conserved Ca3+ antagonist-binding properties and putative folding structure of a recombinant high-affinity dihydropyridines-binding domain. Biochem J 347: 829–836

    Article  PubMed  CAS  Google Scholar 

  24. Hurwitz L (1986) Pharmacology of calcium channels and smooth muscle. Ann Rev Toxicol 26: 225–228

    Article  CAS  Google Scholar 

  25. Ithipanichpong C, Ruangrungsi K, Kemsri W, Sawasdipanich A (2003) Antispasmodic effects of curcuminoïds on isolated guinea-pig ileum and rat uterus. J Med Assoc Thai 86(2): S299–S309

    Google Scholar 

  26. Jayaprakasha Gk, Rao LJ, Sakariah kk (2006) Antioxidant activities of Curcumin, demethoxycurcumin and bisdemethoxycur-cumin. Food Chem 98: 720–724

    Article  CAS  Google Scholar 

  27. Kamishima T, Nelson MT, Patlak JB (1992) Carbachol modulates voltage sensibility of calcium channel in bronchial smooth muscle of rats. Am J Physiol Cell Physiol 32(1): C69–C77

    Google Scholar 

  28. Katzung BG (2007) Pharmacologie fondamentale et clinique. 7e Edition Piccin (Padoue-Italie), 1150 p

  29. Kenny J (1995) Calcium channel blocking agents and the heart. Br Med J 291(6503): 1150–1152

    Article  Google Scholar 

  30. Kiuchi F (1993) nematocidal activity of turmeric: synergistic action of curcuminoïdes. Chem Pharmacol Bull (Tokyo) 49(9): 1640–1643

    Google Scholar 

  31. Lee HS (2006) Antiplatelet property of Curcumalonga L. rhizome-derived ar-turmerone. Bioresour Technol 97: 1372–1376

    Article  PubMed  CAS  Google Scholar 

  32. Leonetti G, Magnami B, Pessina AC, et al. (2002) COHORT Study Group tolerability of long-term treatment with lercanidipine versus amlodipine and lacidipine in elderly hypertensives. Am J Hypertens 15: 932–940

    Article  PubMed  CAS  Google Scholar 

  33. Leung AY, Foster S (1996) Encyclopedia of common natural ingredients used in food, drugs and cosmetics, 2nd ed. John Wiley & Sons, New York, 49–501

    Google Scholar 

  34. Milanov MP, Stoyanov IN (1982) A possibility of substituting Ca2+ by Ba2+ or Mn2+ during the contractile processes of complex stomach smooth muscles. Gen Pharmacol 13: 511–523

    PubMed  CAS  Google Scholar 

  35. Morris CR, Harvey IM, Stebbings WSL, et al. (2003) Do calcium channel blockers and antimuscarinics protect against perforated colonic diverticular disease? A case control study. Gut 52: 1734–1737

    Article  PubMed  CAS  Google Scholar 

  36. Murillo DM, Plaza AM, Arruebo PM (1979) The effect of Mn2+, Ba2+, and Ca2+ on spontaneous motility in sheep duodenum in vitro. Gen Pharmacol 28(1): 65–67

    Google Scholar 

  37. Oluwatosin AA, Raline MA, Monica MA, et al. (2009) Hypotensive and endothelium-independent vasorelaxant effects of methanolic extract from Curcumalonga L. in rats. J Ethnopharmacol 124(3): 457–462

    Article  Google Scholar 

  38. Pacher P, Ungvari Z, Kecskemeti V, et al. (2001) Serotonin reuptake inhibitors fluoxetine and citalopram relax intestinal smooth muscle. Can J Physiol Pharmacol 79(7): 580–584

    Article  PubMed  CAS  Google Scholar 

  39. Park EJ, Jeon CH, Ko G, et al. (2000) Protective effect of curcumin in rat liver injury induced by carbon tetrachloride. J Pharm Pharmacol 52: 437–440

    Article  PubMed  CAS  Google Scholar 

  40. Park BS, Kim JG, Kim MR, et al. (2005) Curcuma longa L. Constituents inhibits sortase A and Staphylococcus Aureus cell adhesion to fibrone. J Agric Food Chem 53: 9005–9009

    Article  PubMed  CAS  Google Scholar 

  41. Poulter NR, Wedel H, Dahlof B, et al. (2005) For the ASCOT investigators. Role of blood pressure and other variables in the differential cardiovascular event rates noted in the Angloscandinavian cardiac outcomes trial-blood pressure lowering arm. ASCOT-BPLA. Lancet 366: 907–913

    Article  PubMed  CAS  Google Scholar 

  42. Quiles LJ, Mesa D, Ramirez-Tortosa LC, et al. (2002) Curcuma longa extract supplementation reduces oxydative stress and attenuates aortic fatty streak development in rabbits. Arterioscler Thromb Vasc Biol 22: 1225

    Article  PubMed  CAS  Google Scholar 

  43. Radha kM, Anoop kS, Jaya G, Rikhab CS (2006) Multiple biological activities of curcumin: a short review. Life Sci 78: 2081–2087

    Article  Google Scholar 

  44. Rafatulla S, Tariq M, Alyahya MA, et al. (1990) Evaluation of turmeric (Curcuma longa) for gastric and duodenal antiulcer activity in rats. J Ethnopharmacol 29: 25–34

    Article  Google Scholar 

  45. Ramirez-Tortosa MC, Mesa MD, Aguilera MC, et al. (1999) Oral administration of turmeric extract inhibits LDL oxidation and has hypocholesterolemic effect in rabbits with experimental atherosclerosis. Atherosclerosis 147: 371–378

    Article  PubMed  CAS  Google Scholar 

  46. Ramsewak RS, De Witt DL, Nair MG (2000) Cytotoxicity, antioxidant and anti-inflammatory activities of curcumins I–III from Curcuma longa. Phytomedicine 7(4): 303–308

    PubMed  CAS  Google Scholar 

  47. Sasaki Y, Goto H, Todha C, et al. (2003) Effects of Curcuma drugs on vasomotion in isolated rat aorta. Biol Pharm Bull 26(8): 1135–1143

    Article  PubMed  CAS  Google Scholar 

  48. Sholz H (1997) Pharmacological aspects of calcium channel blockers. Cardiovasc Drugs Ther 10(3): 869–872

    Article  Google Scholar 

  49. Srinivas L, Shalini VK, Shylaya M (1992) Turmerin: a water-soluble antioxidant peptide from turmeric Curcuma longa). Arch Biochem Biophys 292(2): 617–623

    Article  PubMed  CAS  Google Scholar 

  50. Srivastava R (1989) Inhibition of neutrophil response by curcumin. Agents Actions 28: 298–303

    Article  PubMed  CAS  Google Scholar 

  51. Varon J, Mark PE (2003) Clinical review: the management of hypertensive crises. Crit care 7(5): 374–384

    Article  PubMed  Google Scholar 

  52. Watt JM, Breyer-Brandwijk MG (1962) Medicinal and poisonous plants of Southern and Eastern Africa (2e Edition). E & S Linvingston Ltd. Edinburgh and London

  53. Werayut P, Wandee G (2006) Variation of bioactive components in Curcuma longa in Thailand. Curr Sci 91(10): 1397–1400

    Google Scholar 

  54. World Health Organization [WHO] (1999) Monographs on selected medicinal plants 1. Geneva, p 118

  55. Yamakage M, Namiki A (2002) Calcium channels. Basic aspects of their structure, function and gene encoding; anesthetic action on the channels: a review. Can J Anesth 49: 151–164

    Article  PubMed  Google Scholar 

  56. Yang X, Thomas DP, B Zhang et al. (2006) Curcumin inhibits platelet-derived growth factor-stimulated smooth muscle cell function and injury-induced neointima formation. Arterioscler. Thromb Vasc Biol 26(1): 85–90

    Article  PubMed  Google Scholar 

  57. Yen KY (1992) The illustrated Taipei. SMC publishing, Inc. Taiwan, 82 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Traoré.

About this article

Cite this article

Bleu, G.M., Traoré, F., Coulibaly, S. et al. Effets pharmacodynamiques d’un extrait hydroalcoolique de Curcuma longa Linné (Zingiberaceae) sur le système cardiovasculaire, la respiration et l’activité mécanique intestinale de mammifères. Phytothérapie 9, 7–17 (2011). https://doi.org/10.1007/s10298-010-0600-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10298-010-0600-7

Mots clés

Keywords

Navigation