Skip to main content
Log in

Activités antioxydantes de quelques fruits communs et sauvages d’Algérie

Antioxydant activities of some common and wild fruits from Algeria

  • Article original
  • Pharmacognosie
  • Published:
Phytothérapie

Résumé

Les activités antioxydantes (AA) de 27 fruits provenant principalement du nord algérien sont analysées par mesure du pouvoir réducteur du fer (III) à fer (II). De tous les fruits étudiés, la fraction (pulpe + pelure) des baie de l’arbre à fraises (Arbutus unedo L.), les mûres sauvages (Morus nigra L.) et les dattes (Phoenix dactylifera L.) noires arrondies montrent des AA plus élevées: 2 049, 1 115 et 1 091 mg de vitamine C par 100 g de masse fraîche (mf) respectivement. L’effet synergique (ES), calculé uniquement pour les pelures de trois fruits est de 1,29 ± 0,04 (arbousier/datte grenat à noyaux), 1,74 ± 0,07 (arbousier/raisins noirs), 2,24 ± 0,11 (dattes grenat à noyau/raisins noirs) et 1,45 ± 0,05 (arbousier/datte grenat à noyau/raisins noirs). L’indice d’hétérogénéité (IH) introduit dans cette étude renseigne sur la répartition des substances antioxydantes entre les différentes parties des fruits étudiés.

Abstract

Antioxidant activities (AA) of 27 fruits from northern Algeria were studied by measurement of iron (III) to iron (II)-reducing power. Among the investigated fruit fractions, the (pulp + peel) part of arbutus berries (Arbutus unedo L.), wild mulberry (Morus nigra L.) and round black date (Phoenix dactylifera L.) showed greater antioxidant activities: 2 049, 1 115 and 1 091 mg vitamin C/100 g wet weight (ww) respectively. Also, the AA of peels and seeds were separately investigated. Mixture effect (MME), calculated for only three fruit peels, is of 1.29 ± 0.04 (arbutus/garnet wild stone date), 1.74 ± 0.07 (arbutus/black grapes), 2.24 ± 0.11 (garnet wild stone dates/black grapes) and 1.45 ± 0.05 (arbutus/garnet wild stone date/black grapes). The introduced heterogeneous index (HI) indicated a large variability in the distribution of antioxidant substances between different parts of the fruits studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Bibliographie

  1. Ahn J, Grun IU, Mustapha A (2007) Effects of plant extracts on microbial growth, color change, and lipid oxidation in cooked beef. Food Microbiol 24: 7–14

    Article  CAS  PubMed  Google Scholar 

  2. Alarcao-E-Silva MLCMM, Leitao AEB, Azinheira HG, et al (2001) The Arbutus berry: Studies on its color and chemical characteristics at two mature stages. J Food Compos Anal 14: 27–35

    Article  CAS  Google Scholar 

  3. Al-Farsi M, Alasalvar C, Morris A, et al (2005) Compositional and sensory characteristics of three native sun-dried dte (Phoenix dactylifera L.) Varieties Grown in Oman. J Agr Food Chem 53: 7586–91

    Article  CAS  Google Scholar 

  4. Amarowicz R, Zegarska Z, Pegg RB, et al (2007) Antioxidant and radical scavenging activities of a barley crude extract and its fraction. Czech J Food Sci 25: 73–80

    CAS  Google Scholar 

  5. Ambé GA (2001) Les fruits sauvages comestibles des savanes guinéennes de Côte-d’Ivoire: état de la connaissance par une population locale, les Malinké. Biotechnol Agron Soc Environ 5(1): 43–58

    Google Scholar 

  6. Bagchi D, Bagchi M, Stohs SJ, et al (2000) Free radicals and grape seed proanthocyanidin extract: importance in human kealth and disease prevention. Toxicol 148(2): 87–9

    Article  Google Scholar 

  7. Benchelah AC, Maka M (2008) Les dattes: intérêt en nutrition. Phytothérapie 6: 117–21

    Article  CAS  Google Scholar 

  8. Biglari F, AlKarkhi AFM, Easa AM (2008) Antioxidant activity and phenolic content of various date palms (Phoenix dactylifera) fruits from Iran. Food Chem 107: 1636–41

    Article  CAS  Google Scholar 

  9. Blázovics A, Lugasi A, Szentmihályi K, et al (2003) Reducing power of the natural polyphenols of sempervivum tectorum in vitro and in vivo. Acta Biol Szeged 47 (1–4): 99–102

    Google Scholar 

  10. Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56: 317–33

    Article  CAS  PubMed  Google Scholar 

  11. Chen HY, Yen GC (2007) Antioxidant activity and free radical-scavenging capacity of extracts from guava (Psidium guajava L.) leaves. Food Chem 101: 686–94

    Article  CAS  Google Scholar 

  12. Dauchet L, Amouyel PH, Dallongeville J (2005) Consommation de fruits et légumes et risque d’accident vasculaire cérébral et cardiaque: méta-analyse des études épidémiologiques prospectives. Cah Nutr Diet 40(1): 31–40

    Google Scholar 

  13. Gao L, Mazza G (1995) Characterization, quantitation, and distribution of anthocyanins and colourless phenolics in sweet cherries. J Agr Food Chem 43: 343–46

    Article  CAS  Google Scholar 

  14. Guo C, Yang J, Wei J, et al (2003) Antioxydant activities of peel, pulp, and seed fractions of common fruits as determined by FRAP assay. Nutr Res 23: 1719–26

    Article  CAS  Google Scholar 

  15. Hinneberg I, Dorman D HJ, Hiltunen R (2006) Antioxydant activities of extracts from selected culinary herbs and spices. Food Chem 97: 122–9

    Article  CAS  Google Scholar 

  16. Iwahashi H (2000) Some polyphenols inhibit the formation of pentyl radical and octanoic acid radical in the reaction mixture of linole eic acid hydroperoxide with ferrous ions. Biochem 346: 265–73

    Article  CAS  Google Scholar 

  17. Koyuncu F (2004) Morphological and agronomical characterization of native black mulberry (Morus nigra L.) in Sutçuler, Turkey. IP PG GRI News Lett 138: 32–5

    Google Scholar 

  18. Mansouri A, Embarek G, Kokkalou E, et al (2005) Phenolic profile and antioxidant activity of the Algerian ripe date palm fruit (Phoenix dactylifera). Food Chem 89: 411–20

    Article  CAS  Google Scholar 

  19. Mazza G, Kay CD, Cottrell T, et al (2002) Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. J Agr Food Chem 50: 7731–7

    Article  CAS  Google Scholar 

  20. Oyaizu M (1986) Studies on products of browning reaction: antioxydative activity of products of browning reaction. Jpn J Nutr 44: 307–15

    CAS  Google Scholar 

  21. Peyrat-Maillard MN, Cuvelier ME, Berset C (2003) Antioxidant activity of phenolic compounds in 2,2’-Azobis (2-amidinopropane) dihydrochlorid de (AAPH)-Induced oxidation: synergistic and antagonistic effects. JAOCS 10(80): 1007–12

    Google Scholar 

  22. Pincemail J, Defraigne JO (2004) Les antioxydants: un vaste réseau de défenses pour lutter contre le es effets toxiques de l’oxygène. Symposium « antioxydants et alimentation », Institut Danone, Bruxelles, 23 octobre 2004

    Google Scholar 

  23. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxydant activity relationships of flavonoids and phenolic acids. Free Rad dical Bio Med 20: 933–56

    Article  CAS  Google Scholar 

  24. Scalzo J, Politi A, Pellegrini N, et al (2005) Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutr 21: 207–13

    Article  CAS  Google Scholar 

  25. Singh RP, Murthy KNC, Jayaprakacha GK (2002) Studies on the antioxidant activity of pomegranate peel and seed extracts using in vitro models. J Agr Food Chem 50: 81–6

    Article  CAS  Google Scholar 

  26. Yildirim A, Mavi A, Kara A (2001)Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J Agr Food Chem 49: 4083–89

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Benamara.

About this article

Cite this article

Allane, T., Benamara, S. Activités antioxydantes de quelques fruits communs et sauvages d’Algérie. Phytothérapie 8, 171–175 (2010). https://doi.org/10.1007/s10298-010-0553-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10298-010-0553-x

Mots clés

Keywords

Navigation