Advertisement

Phytothérapie

, 4:194 | Cite as

Le Svetol ®, un extrait de café vert décaféiné, induit une perte de poids et augmente le ratio masse maigre sur masse grasse chez des volontaires en surcharge pondérale

  • O. Dellalibera
  • B. Lemaire
  • S Lafay
Phytothérapie expérimentale

Svetol®, green coffee extract, induces weight loss and increases the lean to fat mass ratio in volunteers with overweight problem

Résu mé

Pour tester les effets du Svetol®, un extrait de café vert décaféiné possédant un ratio spécifique entre l’acide 5-caféyl-quinique (acide chlorogénique) et les autres isomères d’acides caféylquiniques, sur la perte de poids, 50 volontaires ayant un indice de masse corporelle (IMC) supérieur à 25 ont été sélectionnés. Ils ont été randomisés en deux groupes : l’un (n = 20) recevant le placebo, l’autre (n = 30) recevant le Svetol® en parallèle d’une alimentation légèrement hypocalorique. Chaque volontaire consomme une capsule de Svetol® ou de placebo deux fois par jour pendant 60 jours, au moment des repas principaux. Le poids, l’IMC, le ratio masse maigre/masse grasse (MM/MG) et l’auto-évaluation de l’aspect physique ont été déterminés à Jo et J60. Après 60 jours de traitement, une réduction significative du poids de 4,97 +/- 0,32 kg (5,7 %) a été observée dans le groupe Svetol® comparé au groupe contrôle (p < 0,001). Le ratio MM/MG est augmenté de façon significative dans le groupe Svetol® comparé au groupe contrôle : 4,1 +/- 0,7 %vs 1,6 +/- 0,6 % respectivement (p < 0,01). Ces résultats démontrent que le Svetol® est capable d’augmenter l’effet d’une alimentation légèrement hypocalorique chez des volontaires ayant des problèmes de surpoids. Cet effet pourrait être expliqué par une meilleure utilisation des graisses et par la prévention de leur accumulation.

Abstract

In order to test the effects of Svetol®, a green coffee extract with specific ratio between 5-caffeoylquinic acid and others caffeoylquinic acid isomers, on weight loss, 50 volunteers with body mass index superior to 25 were selected. They were randomized in two groups, control group (n = 20) receiving placebo, treated group (n = 30) receiving Svetol® with bland low calory diet. Each volunteer took one capsule of Svetol® or placebo twice a day with main meal, for 60 days. Changes in weight, body mass index (BMI), Muscle Mass/Fat Mass ratio (MM/FM) and self-evaluation of physical aspect were recorded at To and T60. After 60 days of treatment, a significant reduction in weight of 4.97 +/- 0.32 kg (5.7 %) was observed in the Svetol® group compared to control group (p < 0.001). Moreover, MM/FM ratio was increased significantly in Svetol® group compared to control group : 4.1 +/-0.7 %vs 1.6 +/- 0.6 respectively (p < 0.01). The significant decrease of weight and increase of MM/FM ratio showed that Svetol® is able to exacerbate effect of a bland low caloric diet in volunteers who have overweight. This effect could be explained by increasing the consumption of fatty deposits and by preventing them from being accumulated.

Mots clés

Acides chlorogéniques Svetol® Poids Masse maigre/masse grasse (MM/MG) 

Keywords

Chlorogenic acids Svetol® Weight Muscle mass/fat mass ratio 

Bibliographie

  1. 1.
    Anthoni C, Kolthoff N (1977) In: Fondamenti di anatomia e fisiologia dell’uomo (Ambrosina CE, Ed.), Milano, p 433Google Scholar
  2. 2.
    Arion WJ, Canfield WK, Ramos FC,et al. [1997] Chlorogenic acid and hydroxynitrobenzaldehyde: new inhibitors of hepatic glucose 6-phosphatase. Arch Biochem Biophys 339(2): 315–22PubMedCrossRefGoogle Scholar
  3. 3.
    Clifford MN (1999) Chlorogenic acids and other cinnamates. Nature, occurrence and dietary burden. J Sci Food Agric 79: 362–372CrossRefGoogle Scholar
  4. 4.
    Foley S, Navaratnam S, McGarvey DJ,et al. (1999) Singlet oxygen quenching and the redox properties of hydroxycinnamic acids. Free Radic Biol Med 26(9–10): 1202–8PubMedCrossRefGoogle Scholar
  5. 5.
    Guy-Grand B (2005) Institut Pasteur. Centre d’information scientifiqueGoogle Scholar
  6. 6.
    Hemmerle H, Burger HJ, Below P,et al. (1997) Chlorogenic acid and synthetic chlorogenic acid derivatives: novel inhibitors of hepatic glucose-6-phosphate translocase. J Med Chem 40(2): 137–45PubMedCrossRefGoogle Scholar
  7. 7.
    Herling AW, Burger HJ, Schwab D,et al. (1998) Pharmacodynamic profile of a novel inhibitor of the hepatic glucose-6-phosphatase system. Am J Physiol 274(6 Pt 1): G1087–93PubMedGoogle Scholar
  8. 8.
    Lafay S, Gil-Izquierdo A, Manach,et al. (2005) Chlorogenic acid is absorbed in its intact form in the stomach of rats. J Nutr, under pressGoogle Scholar
  9. 9.
    Lafay S, Morand C, Manach C,et al. (2005) Absorption and metabolism of caffeic acid and chlorogenic acid in the small intestine of rats. Br J Nutr, under pressGoogle Scholar
  10. 10.
    Liotta S (1974) Obesita e le adiposità localizzate, RomaGoogle Scholar
  11. 11.
    Manach C, Scalbert A, Morand C,et al. (2004) Polyphenols — Food sources and bioavailability. Am J Clin Nutr 79(5): 727–747PubMedGoogle Scholar
  12. 12.
    Mori H, Tanaka T, Shima H,et al. (1986) Inhibitory effect of chlorogenic acid on methylazoxymefhanol acetate-induced carcinogenesis in large intestine and liver of hamsters. Cancer Lett 30(1): 49–54PubMedCrossRefGoogle Scholar
  13. 13.
    Natella F, Nardini M, Giannetti I,et al. (2002) Coffee drinking influences plasma antioxidant capacity in humans. J Agric Food Chem 50 (21): 6211–6PubMedCrossRefGoogle Scholar
  14. 14.
    Ohnishi M, Morishita H, Iwahashi H,et al. (1994) Inhibitory effects of chlorogenic acids on linoleic acid peroxidation and haemolysis. Phytochemistry 36(3): 579–583CrossRefGoogle Scholar
  15. 15.
    Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Rad Biol Med 20(7): 933–956PubMedCrossRefGoogle Scholar
  16. 16.
    Simon C, Herling AW, Preibisch G,et al. (2000) Upregulation of hepatic glucose 6-phosphatase gene expression in rats treated with an inhibitor of glucose-6-phosphate translocase. Arch Biochem Biophys 373(2): 418–28PubMedCrossRefGoogle Scholar
  17. 17.
    Suzuki A, Kagawa D, Ochiai R,et al. (2002) Green coffee bean extract and its metabolites have a hypotensive effect in spontaneously hypertensive rats. Hypertension Research 25(1): 99–107PubMedCrossRefGoogle Scholar
  18. 18.
    Tanaka T, Kojima T, Kawamori T,et al. (1993) Inhibition of 4-nitroquinoline-i-oxide-induced rat tongue carcinogenesis by the naturally occurring plant phenolics caffeic, ellagic, chlorogenic and fërulic acids. Carcinogenesis 14(7): 1321–5PubMedCrossRefGoogle Scholar
  19. 19.
    Tanaka T, Nishikawa A, Shima H,et al. (1990) Inhibitory effects of chlorogenic acid, reserpine, polyprenoic acid (E-5166), or coffee on hepatocarcinogenesis in rats and hamsters. Basic Life Sci 52: 429–40PubMedGoogle Scholar
  20. 20.
    Tsuchiya T, Suzuki O, Igarashi K (1996) Protective effects of chlorogenic acid on paraquat-induced oxidative stress in rats. Biosci Biotechnol Biochem 60(5): 765–8PubMedCrossRefGoogle Scholar
  21. 21.
    Welsch CA, Lachance PA, Wasserman BP (1989) Dietary phenolic compounds: inhibition of sodium-dependant D-glucose uptake in rat intestinal brush border membrane vesicles. J Nutr 119(11): 1698–1704PubMedGoogle Scholar
  22. 22.
    Zhou J, Ashoori F, Suzuki S,et al. (1993) Protective Effect of Chlorogenic Acid on Lipid-Peroxidation Induced in the Liver of Rats by Carbon-Tetrachloride or Co-60-Irradiation. Journal of Clinical Biochemistry and Nutrition 15(2): 119–125Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • O. Dellalibera
    • 1
  • B. Lemaire
    • 2
  • S Lafay
    • 2
  1. 1.Dipartimento Medico-Ambulatorio ObesitàOspedalé SS, Antonio e MargheritaTortonaItalie
  2. 2.Barkem, Le Marais OuestGardonneFrance

Personalised recommendations