Amplifiers and Lasers in PCF Configurations

  • Kristian HougaardEmail author
  • Frederik D. Nielsen


In this paper we will present an overview of the use of photonic crystal fibers as fiber amplifiers. We will describe the basic concepts of optical amplification, and how to do numerical modelling of such components. We will then identify advantages and disadvantages of amplifiers based on PCF technology compared to conventional fibers, and then go into greater detail on some of these specific applications, such as low pump power amplifiers, and high-power double-clad amplifiers and lasers.


Numerical Modelling Photonic Crystal Basic Concept Pump Power Power Amplifier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Bjarklev, Optical Fiber Amplifiers (Artech House, 1993).Google Scholar
  2. 2.
    E. Desurvire, Erbium Doped Fiber Amplifiers: Principles and Applications (Wiley-Interscience, 1994).Google Scholar
  3. 3.
    E. Desurvire, D. Bayart, B. Desthieux, and S. Bigo, Erbium Doped Fiber Amplifiers—Device and Systems Developments (Wiley-Interscience, 2002).Google Scholar
  4. 4.
    Miniscalco, W.J. 1991Erbium-Doped Glasses for Fibre Amplifiers at 1500 Nm.J. Lightwave Technol.9234250ADSGoogle Scholar
  5. 5.
    Adel, P., Fallnich, C. 2002High-Power Ultra-Broadband Mode-Locked Yb3+-Fiber Laser with 118 Nm Bandwidth. Opt. Express10622627ADSGoogle Scholar
  6. 6.
    Limpert, J., Schreiber, T., Nolte, S., Zellmer,  H., Tünnermann,  A. , Iliew, R., Lederer,  F., Broeng, J., Vienne, G., Petersson, A., Jakobsen, C. 2003High-Power Air-Clad Large-Mode-Area Photonic Crystal Fiber Laser.Opt. Express11818823CrossRefADSGoogle Scholar
  7. 7.
    Jeong, Y., Sahu, J.K., Williams,  R.B., Richardson, D.J., Furusawa,  K., Nilsson, J. 2003Ytterbium-Doped Large-Core Fibre Laser with 272 W Output Power.Electron. Lett.39977978Google Scholar
  8. 8.
    Zellmer, H., Plamann, K., Huber, G., Scheife, H., Tünnermann, A. 1998Visible Double-Clad Upconversion Fibre Laser.Electron. Lett.34565567Google Scholar
  9. 9.
    Tünnermann, A., Zellmer, H., Buteau, S., Welling, H. 1997All Fibre Laser System with 0.1 W Output Power in Blue Spectral Range.Electron. Lett.3313831384Google Scholar
  10. 10.
    Furusawa, K., Malinowski, A., Price, J.H.V., Monro,  T.M., Sahu, J.K., Nilsson, J., Richardson, D.J. 2001 Cladding Pumped Ytterbium-Doped Fiber Laser with Holey Inner and Outer Cladding. Opt. Express9714720ADSGoogle Scholar
  11. 11.
    Wadsworth, W.J., Percival, R.M., Bouwmans, G., Knigh, J.C., Russell, P.St.J. 2003High Power Air-Clad Photonic Crystal Fibre Laser.Opt. Express114853ADSCrossRefGoogle Scholar
  12. 12.
    Briks, T.A., Knight, J.C., Russell, P.St. 1997Endlessly Single-Mode Photonic Crystal Fiber.Opt. Lett.22961963ADSGoogle Scholar
  13. 13.
    Knight, J. C., Birks, T. A., Russel, P.St.J., Sandro, J.P. 1998Properties of photonic crystal fiber and the effective index model.J. Opt. Soc. Am. A15748ADSGoogle Scholar
  14. 14.
    Pedersen, B., Bjarklev, A., Poulsen, J. H., Dybdal, K., Larsen,  C.C. 1991The Design of Erbium-Doped Fibre Amplifiers.J. Lightwave Technol.911051112ADSGoogle Scholar
  15. 15.
    Paschotta, R., Nilssona, J., Tropper, A.C., Hanna, D.C. 1997Ytterbium-Doped Fibre Amplifiers.IEEE J. Quant. Electron.3310491056ADSGoogle Scholar
  16. 16.
    Johnson, Steven G., Joannopoulos,  J. D. 2001Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis.Opt. Express8173190ADSCrossRefGoogle Scholar
  17. 17.
    Brechet, F., Marcou, J., Pagnoux, D., Roy, P. 2000Complete Analysis of the Characteristics of Propagation into Photonic Crystal Fibers, by the Finite Element MethodOpt. Fiber Technol.6181191ADSGoogle Scholar
  18. 18.
    Hougaard, K.G., Broeng, J., Bjarklev,  A. 2003Low Pump Power Photonic Crystal Fibre AmplifiersElectron. Lett.39599600Google Scholar
  19. 19.
    W.H. Press, B.P. Flannery, S. A. Teukolsky, and W.T. Vetterling, Numerical Recipes in C—The Art of Scientific Computing (Cambridge University Press,1993).Google Scholar
  20. 20.
    Anders Bjarklev, Jes Broeng, and Araceli Sanchez Bjarklev, Photonic Crystal Fibres (Kluwer Academic Publishers, 2003).Google Scholar
  21. 21.
    Govind P. Agrawal, Fiber-Optic Communications Systems (John Wiley & Sons, Inc., 1997).Google Scholar
  22. 22.
    Cregan, R.F., Mangan, B.J., Knight, J.C., Birks, T.A., Russett, P.St.J., Roberts, P.J., Allan, D.C. 1999Single-Mode Photonic Band Gap Guidance of Light in Air.Science28515371539International Edition—AAAS—Weekly Paper EditionPubMedGoogle Scholar
  23. 23.
    Knight, J.C., Birks, T.A., Cregan, R.F., Russell, P.St.J., Sandro, J.-P. 1998Large mode area photonic crystal fibreElectron. Lett.3413471348Google Scholar
  24. 24.
    Sorensen, T., Broeng, J., Bjarklev, A., Knudsen, E., Libori, S.E.B. 2001Macro-bending loss properties of photonic crystal fibre,Electron. Lett.37287289Google Scholar
  25. 25.
    Mortensen, N.A., Nielsen, M.D., Folkenberg, J.R., Petersson, A., Simonsen, H.R. 2003Improved large-mode-area endlessly single-mode photonic crystal fibers.Opt. Lett.28393395PubMedADSGoogle Scholar
  26. 26.
    W.J. Wadsworth, J.C. Knight, P.St.J. Russell, Large Mode Area Photonic Crystal Fibre Laser, Conference Proceedings—Lasers and Electro-Optics Society Annual Meeting (CLEO), 2001, page 319.Google Scholar
  27. 27.
    J. Jasapara, R. Bise, and R. Windeler, Chromatic dispersion measurements in a photonic bandgap fiber, Conference on Optical Fiber Communication, Technical Digest Series, 70, 519--521, 2002.Google Scholar
  28. 28.
    Poli, Federica, Cucinotta, Annamaria, Fuochi, Matteo, Selleri, Stefano, Vincetti, Luca 2003Characterization of microstructured optical fibers for wideband dispersion compensation.J. Opt. Soc. Am. A.2019581962ADSGoogle Scholar
  29. 29.
    Pedersen, B., Dybdal, K., Hansen, C.D., Bjarklev, A., Povlsen, J.H., Vendeltorp-Pommer, H., Larsen, C.C. 1990Detailed theoretical and experimental investigation of high-gain erbium-doped fiber amplifier.IEEE Photon. Technol. Lett.2863865ADSGoogle Scholar
  30. 30.
    Reid, D.T., Cormack, I.G., Wadsworth, W.J., Knight, J.C., Russell, P.St.J. 2002Soliton self-frequency shift effects in photonic crystal fibre.J. Mod. Opt.49757767ADSGoogle Scholar
  31. 31.
    Ranka, Jinendra K., Windeler, Robert S., Stentz, Andrew J. 2000Fiber Optics and Optical Communications—Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm.Opt. Lett.252527ADSGoogle Scholar
  32. 32.
    Leproux, P., Février, S., Doya, V., Roy, P., Pagnoux, D. 2001Modeling and Optimization of Double-Clad Fiber Amplifiers Using Chaotic Propagation of the Pump.Opt. Fiber Technol.6324339ADSGoogle Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  1. 1.Research Center COMTechnical University of DenmarkLyngbyDenmark

Personalised recommendations