Skip to main content
Log in

Immediate, multiplexed and sequential genome engineering facilitated by CRISPR/Cas9 in Saccharomyces cerevisiae

  • Metabolic Engineering and Synthetic Biology - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A method called Cas-3P allowing for immediate, multiplexed and sequential genome engineering was developed using one plasmid expressing Cas9 and three marked plasmid backbones (P1, P2 and P3) for guide RNA (gRNA) expression. The three marked gRNA plasmid backbones were recurred in a P1–P2–P3 order for sequential gene targeting, without construction of any additional plasmid and elimination of gRNA plasmid by induction in each round. The efficiency of direct gRNA plasmid curing mediated by Cas-3P was more than 40% in sequential gene targeting. Besides, Cas-3P allowed single-, double- and triple-loci gene targeting with an efficiency of 75%, 36.8% and 8.2% within 3–4 days, respectively. Through three sequential rounds of gene targeting within 10 days, S. cerevisiae was optimized for the production of patchoulol by replacing one promoter, overexpressing three genes and disrupting four genes. The work is important for practical application in the cell factory engineering of S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Albertsen L, Chen Y, Bach LS, Rattleff S, Maury J, Brix S, Nielsen J, Mortensen UH (2011) Diversion of flux toward sesquiterpene production in Saccharomyces cerevisiae by fusion of host and heterologous enzymes. Appl Environ Microbiol 77:1033–1040. https://doi.org/10.1128/AEM.01361-10

    Article  CAS  PubMed  Google Scholar 

  2. Altenbuchner J (2016) Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System. Appl Environ Microbiol 82:5421–5427. https://doi.org/10.1128/AEM.01453-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Carbonell P, Currin A, Jervis AJ, Rattray NJW, Swainston N, Yan C, Takano E, Breitling R (2016) Bioinformatics for the synthetic biology of natural products: integrating across the Design–Build–Test cycle. Nat Prod Rep 33:925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Casini A, Christodoulou G, Freemont PS, Baldwin GS, Ellis T, MacDonald JT (2014) R2oDNA designer: computational design of biologically neutral synthetic DNA sequences. Acs Synth Biol 3:525–528. https://doi.org/10.1021/sb4001323

    Article  CAS  PubMed  Google Scholar 

  5. Chee MK, Haase SB (2012) New and redesigned pRS plasmid shuttle vectors for genetic manipulation of Saccharomyces cerevisiae. G3-GENES GENOM GENET 2:515–526. https://doi.org/10.1534/g3.111.001917

    Article  CAS  Google Scholar 

  6. Chung ME, Yeh IH, Sung LY, Wu MY, Chao YP, Ng IS, Hu YC (2017) Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9. Biotechnol Bioeng 114:172–183. https://doi.org/10.1002/bit.26056

    Article  CAS  PubMed  Google Scholar 

  7. Dai Z, Wang B, Liu Y, Shi M, Wang D, Zhang X, Liu T, Huang L, Zhang X (2014) Producing aglycons of ginsenosides in bakers’ yeast. Sci Rep 4:3698. https://doi.org/10.1038/srep03698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Designer deletion strains derived from Saccharomyces cerevisiae S288C A useful set of strains and plasmids for PCR-mediated gene disruption and other applications. (2010) Yeast 14:115–132

  9. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41:4336–4343. https://doi.org/10.1093/nar/gkt135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940

    Article  CAS  PubMed  Google Scholar 

  11. Engels B, Dahm P, Jennewein S (2008) Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards taxol (paclitaxel) production. Metab Eng 10:201–206. https://doi.org/10.1016/j.ymben.2008.03.001

    Article  CAS  PubMed  Google Scholar 

  12. Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30:23. https://doi.org/10.1093/nar/30.6.e23

    Article  Google Scholar 

  13. Horwitz A, Walter J, Schubert M, Kung S, Hawkins K, Platt D, Hernday A, Mahatdejkul-Meadows T, Szeto W, Chandran S (2015) Efficient Multiplexed Integration of Synergistic Alleles and Metabolic Pathways in Yeasts via CRISPR-Cas Cell Sys 1:88–96

    CAS  Google Scholar 

  14. Hu H, Wang T, Chen J, Yu F, Liu H, Zuo Z, Yang Z, Fan H (2016) Screening and identification of proteins interacting with IL-24 by the yeast two-hybrid screen, Co-IP, and FRET assays. Anticancer Drugs 27:318–327. https://doi.org/10.1097/CAD.0000000000000343

    Article  CAS  PubMed  Google Scholar 

  15. Hwang WY, Fu YF, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JRJ, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229. https://doi.org/10.1038/nbt.2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jakociunas T, Rajkumar AS, Zhang J, Arsovska D, Rodriguez A, Jendresen CB, Skjodt ML, Nielsen AT, Borodina I, Jensen MK, Keasling JD (2015) CasEMBLR: Cas9-Facilitated Multiloci Genomic Integration of in Vivo Assembled DNA Parts in Saccharomyces cerevisiae. Acs Synth Biol 4:1226–1234. https://doi.org/10.1021/acssynbio.5b00007

    Article  CAS  PubMed  Google Scholar 

  17. Kawai S, Hashimoto W, Murata K (2010) Transformation of Saccharomyces cerevisiae and other fungi: methods and possible underlying mechanism. Bioeng Bugs 1:395–403. https://doi.org/10.4161/bbug.1.6.13257

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kondo T, Tezuka H, Ishii J, Matsuda F, Ogino C, Kondo A (2012) Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae. J Biotechnol 159:32–37. https://doi.org/10.1016/j.jbiotec.2012.01.022

    Article  CAS  PubMed  Google Scholar 

  19. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826. https://doi.org/10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marienhagen J, Bott M (2013) Metabolic engineering of microorganisms for the synthesis of plant natural products. J Biotechnol 163:166–178. https://doi.org/10.1016/j.jbiotec.2012.06.001

    Article  CAS  PubMed  Google Scholar 

  21. Meadows AL, Hawkins KM, Tsegaye Y, Antipov E, Kim Y, Raetz L, Dahl RH, Tai A, Mahatdejkul-Meadows T, Xu L, Zhao L, Dasika MS, Murarka A, Lenihan J, Eng D, Leng JS, Liu CL, Wenger JW, Jiang H, Chao L, Westfall P, Lai J, Ganesan S, Jackson P, Mans R, Platt D, Reeves CD, Saija PR, Wichmann G, Holmes VF, Benjamin K, Hill PW, Gardner TS, Tsong AE (2016) Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature 537:694–697. https://doi.org/10.1038/nature19769

    Article  CAS  PubMed  Google Scholar 

  22. Nielsen J, Keasling JD (2016) Engineering Cellular Metabolism. Cell 164:1185–1197

    Article  CAS  PubMed  Google Scholar 

  23. Paddon CJ, Keasling JD (2014) Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol 12:355–367. https://doi.org/10.1038/nrmicro3240

    Article  CAS  PubMed  Google Scholar 

  24. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355. https://doi.org/10.1038/nbt.2842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schwartz C, Shabbir-Hussain M, Frogue K, Blenner M, Wheeldon I (2017) Standardized markerless gene integration for pathway engineering in Yarrowia lipolytica. Acs Synth Biol 6:402–409. https://doi.org/10.1021/acssynbio.6b00285

    Article  CAS  PubMed  Google Scholar 

  26. Siddiqui MS, Choksi A, Smolke CD (2015) A system for multi-locus chromosomal integration and transformation-free selection marker rescue. FEMS Yeast Res 14:1171–1185

    Article  Google Scholar 

  27. Smanski MJ, Bhatia S, Zhao D, Park Y, Woodruff LB, Giannoukos G, Ciulla D, Busby M, Calderon J, Nicol R, Gordon DB, Densmore D, Voigt CA (2014) Functional optimization of gene clusters by combinatorial design and assembly. Nat Biotechnol 32:1241–1249

    Article  CAS  PubMed  Google Scholar 

  28. Song X, Huang H, Xiong ZQ, Ai LZ, Yang S (2017) CRISPR-Cas 9(D10A) Nickase-Assisted Genome Editing in Lactobacillus casei. Appl Environ Microb 83:1259–1267. https://doi.org/10.1128/AEM.01259-17

    Article  Google Scholar 

  29. Storici F, Durham CL, Gordenin DA, Resnick MA (2003) Chromosomal site-specific double-strand breaks are efficiently targeted for repair by oligonucleotides in yeast. Proc Natl Acad Sci 100:14994–14999. https://doi.org/10.1073/pnas.2036296100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Storici F, Lewis LK, Resnick MA (2001) In vivo site-directed mutagenesis using oligonucleotides. Nat Biotechnol 19:773–776

    Article  CAS  PubMed  Google Scholar 

  31. Wang S, Dong S, Wang P, Tao Y, Wang Y (2017) Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System. Appl Environ Microbiol 83:217–233. https://doi.org/10.1128/AEM.00233-17

    Article  Google Scholar 

  32. Westbrook AW, Moo-Young M, Chou CP (2016) Development of a CRISPR-Cas9 tool kit for comprehensive engineering of Bacillus subtilis. Appl Environ Microbiol 82:4876–4895. https://doi.org/10.1128/AEM.01159-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wienert B, Wyman SK, Richardson CD, Yeh CD, Akcakaya P, Porritt MJ, Morlock M, Vu JT, Kazane KR, Watry HL, Judge LM, Conklin BR, Maresca M, Corn JE (2019) Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science 364:286–289. https://doi.org/10.1126/science.aav9023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xie W, Liu M, Lv X, Lu W, Gu J, Yu H (2013) Construction of a controllable β-carotene biosynthetic pathway by decentralized assembly strategy in Saccharomyces cerevisiae. Biotechnol Bioeng 111:125–133

    Article  PubMed  Google Scholar 

  35. Xie W, Ye L, Lv X, Xu H, Yu H (2015) Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae. Metab Eng 28:8–18. https://doi.org/10.1016/j.ymben.2014.11.007

    Article  CAS  PubMed  Google Scholar 

  36. Xu T, Li Y, Shi Z, Hemme CL, Li Y, Zhu Y, Van Nostrand JD, He Z, Zhou J (2015) Efficient Genome Editing in Clostridium cellulolyticum via CRISPR-Cas9 Nickase. Appl Environ Microbiol 81:4423–4431. https://doi.org/10.1128/AEM.00873-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jiang Yu, Chen Biao, Duan Chunlan, Sun Bingbing, Yang Junjie, Yang Sheng (2015) Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81:2506–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yao X, Wang X, Hu XD, Liu Z, Liu JL, Zhou HB, Shen XW, Wei Y, Huang ZJ, Ying WQ, Wang Y, Nie YH, Zhang CC, Li SL, Cheng LP, Wang QF, Wu Y, Huang PY, Sun Q, Shi LY, Yang H (2017) Homology-mediated end joining-based targeted integration using CRISPR/Cas9. Cell Res 27:801–814. https://doi.org/10.1038/cr.2017.76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell 163:759–771. https://doi.org/10.1016/j.cell.2015.09.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J, Degennaro EM, Winblad N, Choudhury SR, Abudayyeh OO, Gootenberg JS (2017) Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array. Nat Biotechnol 35:31–34

    Article  CAS  PubMed  Google Scholar 

  41. Zhou J, Wu R, Xue X, Qin Z (2016) CasHRA (Cas9-facilitated Homologous Recombination Assembly) method of constructing megabase-sized DNA. Nucleic Acids Res 44:124–133. https://doi.org/10.1093/nar/gkw475

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 31500043), the Natural Science Foundation of Shanghai (No. 19ZR1473000), the Fundamental Research Funds for the Central Universities (No. 22221818014), and the Open Funding Project of the State Key Laboratory of Bioreactor Engineering.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Liu or Feng-Qing Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1322 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZH., Meng, H., Ma, B. et al. Immediate, multiplexed and sequential genome engineering facilitated by CRISPR/Cas9 in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 47, 83–96 (2020). https://doi.org/10.1007/s10295-019-02251-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-019-02251-w

Keywords

Navigation