Improving ionic liquid tolerance in Saccharomyces cerevisiae through heterologous expression and directed evolution of an ILT1 homolog from Yarrowia lipolytica

Abstract

Ionic liquids show promise for deconstruction of lignocellulosic biomass prior to fermentation. Yet, imidazolium ionic liquids (IILs) can be toxic to microbes even at concentrations present after recovery. Here, we show that dominant overexpression of an Ilt1p homolog (encoded by YlILT1/YALI0C04884) from the IIL-tolerant yeast Yarrowia lipolytica confers an improvement in 1-ethyl-3-methylimidazolium acetate tolerance in Saccharomyces cerevisiae compared to the endogenous Ilt1p (ScILT1/YDR090C). We subsequently enhance tolerance in S. cerevisiae through directed evolution of YlILT1 using growth-based selection, leading to identification of mutants that grow in up to 3.5% v/v ionic liquid. Lastly, we demonstrate that strains expressing YlILT1 variants demonstrate improved growth rate and ethanol production in the presence of residual IIL. This shows that dominant overexpression of a heterologous protein (wild type or evolved) from an IIL-tolerant yeast can increase tolerance in S. cerevisiae at concentrations relevant to bioethanol production from IIL-treated biomass.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Abascal F, Carmona-Saez P, Carazo J-M, Pascual-Montano A (2008) ChIPCodis: mining complex regulatory systems in yeast by concurrent enrichment analysis of chip-on-chip data. Bioinformatics 24:1208–1209

    CAS  Article  Google Scholar 

  2. 2.

    Abdel-Mawgoud AM, Markham KA, Palmer CM, Liu N, Stephanopoulos G, Alper HS (2018) Metabolic engineering in the host Yarrowia lipolytica. Metab Eng 50:192–208

    CAS  Article  Google Scholar 

  3. 3.

    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    CAS  Article  Google Scholar 

  4. 4.

    Andreishcheva E, Isakova E, Sidorov N, Abramova N, Ushakova N, Shaposhnikov G, Soares M, Zvyagilskaya R (1999) Adaptation to salt stress in a salt-tolerant strain of the yeast Yarrowia lipolytica. Biochem C/C Biokhimiia 64:1061–1067

    CAS  Google Scholar 

  5. 5.

    Bankar A, Zinjarde S, Shinde M, Gopalghare G, Ravikumar A (2018) Heavy metal tolerance in marine strains of Yarrowia lipolytica. Extremophiles 22:617–628. https://doi.org/10.1007/s00792-018-1022-y

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Beopoulos A, Cescut J, Haddouche R, Uribelarrea J-L, Molina-Jouve C, Nicaud J-M (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res. https://doi.org/10.1016/j.plipres.2009.08.005

    Article  PubMed  Google Scholar 

  7. 7.

    Beopoulos A, Mrozova Z, Thevenieau F, Dall M-T, Hapala I, Papanikolaou S, Chardot T, Nicaud J-M (2008) Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol. https://doi.org/10.1128/aem.01412-08

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Blazeck J, Hill A, Liu L, Knight R, Miller J, Pan A, Otoupal P, Alper HS (2014) Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Commun. https://doi.org/10.1038/ncomms4131

    Article  PubMed  Google Scholar 

  9. 9.

    Brandt A, Gräsvik J, Hallett JP, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15:550–583

    CAS  Article  Google Scholar 

  10. 10.

    Brinkworth RI, Munn AL, Kobe B (2006) Protein kinases associated with the yeast phosphoproteome. BMC Bioinform 7:47. https://doi.org/10.1186/1471-2105-7-47

    CAS  Article  Google Scholar 

  11. 11.

    Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimerman N (2005) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244:229–234

    CAS  Article  Google Scholar 

  12. 12.

    Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, Christie KR, Costanzo MC, Dwight SS, Engel SR, Fisk DG, Hirschman JE, Hitz BC, Karra K, Krieger CJ, Miyasato SR, Nash RS, Park J, Skrzypek MS, Simison M, Weng S, Wong ED (2012) Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res 40:D700–705. https://doi.org/10.1093/nar/gkr1029

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Datta S, Holmes B, Park JI, Chen Z, Dibble DC, Hadi M, Blanch HW, Simmons BA, Sapra R (2010) Ionic liquid tolerant hyperthermophilic cellulases for biomass pretreatment and hydrolysis. Green Chem 12:338–345

    CAS  Article  Google Scholar 

  14. 14.

    Dickinson Q, Bottoms S, Hinchman L, McIlwain S, Li S, Myers CL, Boone C, Coon JJ, Hebert A, Sato TK, Landick R, Piotrowski JS (2016) Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain. Microb Cell Fact 15:17. https://doi.org/10.1186/s12934-016-0417-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Fickers P, Benetti P-H, Waché Y, Marty A, Mauersberger S, Smit M, Nicaud J-M (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5:527–543

    CAS  Article  Google Scholar 

  16. 16.

    Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–285. https://doi.org/10.1093/nar/gkv1344

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Forster A, Aurich A, Mauersberger S, Barth G (2007) Citric acid production from sucrose using a recombinant strain of the yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 75:1409–1417. https://doi.org/10.1007/s00253-007-0958-0

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem 9:63–69

    CAS  Article  Google Scholar 

  19. 19.

    Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345. https://doi.org/10.1038/nmeth.1318

    CAS  Article  Google Scholar 

  20. 20.

    Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34. https://doi.org/10.1038/nprot.2007.13

    CAS  Article  Google Scholar 

  21. 21.

    Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G, van Helden J, Andre B (2007) Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol 27:3065–3086. https://doi.org/10.1128/mcb.01084-06

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Golubev V, Golubev N (2002) Selenium tolerance of yeasts. Microbiology 71:386–390

    CAS  Article  Google Scholar 

  23. 23.

    Groenewald M, Boekhout T, Neuveglise C, Gaillardin C, van Dijck PW, Wyss M (2014) Yarrowia lipolytica: safety assessment of an oleaginous yeast with a great industrial potential. Crit Rev Microbiol 40:187–206. https://doi.org/10.3109/1040841x.2013.770386

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Higgins DA, Gladden JM, Kimbrel JA, Simmons BA, Singer SW, Thelen MP (2019) Guanidine riboswitch-regulated efflux transporters protect bacteria against ionic liquid toxicity. J Bacteriol. https://doi.org/10.1128/JB.00069-19

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Higgins DA, Young MKM, Tremaine M, Sardi M, Fletcher JM, Agnew M, Liu L, Dickinson Q, Peris D, Wrobel RL, Hittinger CT, Gasch AP, Singer SW, Simmons BA, Landick R, Thelen MP, Sato TK (2018) Natural variation in the multidrug efflux pump SGE1 underlies ionic liquid tolerance in yeast. 210:219–234. https://doi.org/10.1534/genetics.118.301161

    CAS  Article  Google Scholar 

  26. 26.

    Ito H, Inouhe M, Tohoyama H, Joho M (2007) Characteristics of copper tolerance in Yarrowia lipolytica. Biometals 20:773–780

    CAS  Article  Google Scholar 

  27. 27.

    Jastorff B, Mölter K, Behrend P, Bottin-Weber U, Filser J, Heimers A, Ondruschka B, Ranke J, Schaefer M, Schröder H (2005) Progress in evaluation of risk potential of ionic liquids—basis for an eco-design of sustainable products. Green Chem 7:362–372

    CAS  Article  Google Scholar 

  28. 28.

    Karim AS, Curran KA, Alper HS (2013) Characterization of plasmid burden and copy number in Saccharomyces cerevisiae for optimization of metabolic engineering applications. FEMS Yeast Res. https://doi.org/10.1111/1567-1364.12016

    Article  PubMed  Google Scholar 

  29. 29.

    Kim J-T, Kang SG, Woo J-H, Lee J-H, Jeong BC, Kim S-J (2007) Screening and its potential application of lipolytic activity from a marine environment: characterization of a novel esterase from Yarrowia lipolytica CL180. Appl Microbiol Biotechnol 74:820–828

    CAS  Article  Google Scholar 

  30. 30.

    Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580. https://doi.org/10.1006/jmbi.2000.4315

    CAS  Article  Google Scholar 

  31. 31.

    Langle-Rouault F, Jacobs E (1995) A method for performing precise alterations in the yeast genome using a recyclable selectable marker. Nucleic Acids Res 23:3079–3081

    CAS  Article  Google Scholar 

  32. 32.

    Lee S-M, Jellison T, Alper HS (2014) Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. Biotechnol Biofuels 7:122. https://doi.org/10.1186/s13068-014-0122-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Lee Y-G, Jin Y-S, Cha Y-L, Seo J-H (2017) Bioethanol production from cellulosic hydrolysates by engineered industrial Saccharomyces cerevisiae. Biores Technol 228:355–361. https://doi.org/10.1016/j.biortech.2016.12.042

    CAS  Article  Google Scholar 

  34. 34.

    Liu L, Alper HS (2014) Draft genome sequence of the oleaginous yeast Yarrowia lipolytica PO1f, a commonly used metabolic engineering host. Genome Announc. https://doi.org/10.1128/genomeA.00652-14

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Longley RP, Dennis RR, Heyer MS, Wren JJ (1978) Selective saccharomyces media containing ergosterol and tween 80. J Inst Brew 84:341–345. https://doi.org/10.1002/j.2050-0416.1978.tb03904.x

    CAS  Article  Google Scholar 

  36. 36.

    Madzak C (2015) Yarrowia lipolytica: recent achievements in heterologous protein expression and pathway engineering. Appl Microbiol Biotechnol 99:4559–4577

    CAS  Article  Google Scholar 

  37. 37.

    Madzak C, Beckerich J-M (2013) Heterologous protein expression and secretion in Yarrowia lipolytica. In: Barth G (ed) Yarrowia lipolytica. Microbiology monographs, vol 25. Springer, Berlin, pp 1–76. https://doi.org/10.1007/978-3-642-38583-4_1

    Google Scholar 

  38. 38.

    Madzak C, Gaillardin C, Beckerich J-M (2004) Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review. J Biotechnol 109:63–81

    CAS  Article  Google Scholar 

  39. 39.

    Madzak C, Tréton B, Blanchin-Roland S (2000) Strong hybrid promoters and integrative expression/secretion vectors for quasi-constitutive expression of heterologous proteins in the yeast Yarrowia lipolytica. J Mol Microbiol Biotechnol 2:207–216

    CAS  Google Scholar 

  40. 40.

    Markham KA, Cordova L, Hill A, Alper HS (2017) Yarrowia lipolytica as a cell factory for oleochemical biotechnology. In: Lee SY (ed) Consequences of microbial interactions with hydrocarbons, oils, and lipids: production of fuels and chemicals. Springer International Publishing, Cham, pp 1–18. https://doi.org/10.1007/978-3-319-31421-1_223-1

    Google Scholar 

  41. 41.

    Markham KA, Palmer CM, Chwatko M, Wagner JM, Murray C, Vazquez S, Swaminathan A, Chakravarty I, Lynd NA, Alper HS (2018) Rewiring Yarrowia lipolytica toward triacetic acid lactone for materials generation. Proc Natl Acad Sci USA 115:2096–2101. https://doi.org/10.1073/pnas.1721203115

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Mironczuk AM, Furgala J, Rakicka M, Rymowicz W (2014) Enhanced production of erythritol by Yarrowia lipolytica on glycerol in repeated batch cultures. J Ind Microbiol Biotechnol 41:57–64. https://doi.org/10.1007/s10295-013-1380-5

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Morse NJ, Wagner JM, Reed KB, Gopal MR, Lauffer LH, Alper HS (2018) T7 polymerase expression of guide RNAs in vivo allows exportable CRISPR-Cas9 editing in multiple yeast hosts. ACS Synth Biol 7:1075–1084. https://doi.org/10.1021/acssynbio.7b00461

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Mumberg D, Muller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119–122

    CAS  Article  Google Scholar 

  45. 45.

    Nevoigt E, Kohnke J, Fischer CR, Alper H, Stahl U, Stephanopoulos G (2006) Engineering of promoter replacement cassettes for fine-tuning of gene expression in Saccharomyces cerevisiae. Appl Environ Microbiol 72:5266–5273. https://doi.org/10.1128/aem.00530-06

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Nicaud J-M, Madzak C, van den Broek P, Gysler C, Duboc P, Niederberger P, Gaillardin C (2002) Protein expression and secretion in the yeast Yarrowia lipolytica. FEMS Yeast Res 2:371–379

    CAS  PubMed  Google Scholar 

  47. 47.

    Ouellet M, Datta S, Dibble DC, Tamrakar PR, Benke PI, Li C, Singh S, Sale KL, Adams PD, Keasling JD (2011) Impact of ionic liquid pretreated plant biomass on Saccharomyces cerevisiae growth and biofuel production. Green Chem 13:2743–2749

    CAS  Article  Google Scholar 

  48. 48.

    Pao SS, Paulsen IT, Saier MH (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Papanikolaou S, Chatzifragkou A, Fakas S, Galiotou-Panayotou M, Komaitis M, Nicaud JM, Aggelis G (2009) Biosynthesis of lipids and organic acids by Yarrowia lipolytica strains cultivated on glucose. Eur J Lipid Sci Technol 111:1221–1232

    CAS  Article  Google Scholar 

  50. 50.

    Partow S, Siewers V, Bjorn S, Nielsen J, Maury J (2010) Characterization of different promoters for designing a new expression vector in Saccharomyces cerevisiae. Yeast 27:955–964. https://doi.org/10.1002/yea.1806

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Paulino de Souza J, Dias do Prado C, Eleutherio ECA, Bonatto D, Malavazi I, Ferreira da Cunha A (2018) Improvement of Brazilian bioethanol production—challenges and perspectives on the identification and genetic modification of new strains of Saccharomyces cerevisiae yeasts isolated during ethanol process. Fungal Biol 122:583–591. https://doi.org/10.1016/j.funbio.2017.12.006

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Qiao K, Imam Abidi SH, Liu H, Zhang H, Chakraborty S, Watson N, Kumaran Ajikumar P, Stephanopoulos P (2015) Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metab Eng. https://doi.org/10.1016/j.ymben.2015.02.005

    Article  PubMed  Google Scholar 

  53. 53.

    Ranke J, Stolte S, Störmann R, Arning J, Jastorff B (2007) Design of sustainable chemical products the example of ionic liquids. Chem Rev 107:2183–2206

    CAS  Article  Google Scholar 

  54. 54.

    Rymowicz W, Fatykhova AR, Kamzolova SV, Rywinska A, Morgunov IG (2010) Citric acid production from glycerol-containing waste of biodiesel industry by Yarrowia lipolytica in batch, repeated batch, and cell recycle regimes. Appl Microbiol Biotechnol 87:971–979. https://doi.org/10.1007/s00253-010-2561-z

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Rymowicz W, Rywińska A, Marcinkiewicz M (2009) High-yield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica. Biotech Lett 31:377–380

    CAS  Article  Google Scholar 

  56. 56.

    Rywinska A, Juszczyk P, Wojtatowicz M, Rymowicz W (2011) Chemostat study of citric acid production from glycerol by Yarrowia lipolytica. J Biotechnol 152:54–57. https://doi.org/10.1016/j.jbiotec.2011.01.007

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Rzechonek DA, Day AM, Quinn J, Mirończuk AM (2018) Influence of ylHog1 MAPK kinase on Yarrowia lipolytica stress response and erythritol production. Sci Rep 8:14735. https://doi.org/10.1038/s41598-018-33168-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Rzechonek DA, Dobrowolski A, Rymowicz W, Mironczuk AM (2017) Recent advances in biological production of erythritol. Crit Rev Biotechnol. https://doi.org/10.1080/07388551.2017.1380598

    Article  PubMed  Google Scholar 

  59. 59.

    Sherman D, Durrens P, Beyne E, Nikolski M, Souciet JL (2004) Genolevures: comparative genomics and molecular evolution of hemiascomycetous yeasts. Nucleic Acids Res 32:D315–318. https://doi.org/10.1093/nar/gkh091

    Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Sitepu IR, Garay LA, Enriquez L, Fry R, Butler JH, Lopez JM, Kanti A, Faulina SA, Nugroho AJ, Simmons BA, Singer SW, Simmons CW, Boundy-Mills K (2017) 1-Ethyl-3-methylimidazolium tolerance and intracellular lipid accumulation of 38 oleaginous yeast species. Appl Microbiol Biotechnol 101:8621–8631. https://doi.org/10.1007/s00253-017-8506-z

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Smit MS, Mokgoro MM, Setati E, Nicaud J-M (2004) Preparation of dodecanol-tolerant strains of Yarrowia lipolytica. Biotech Lett 26:849–854. https://doi.org/10.1023/b:bile.0000025890.97067.98

    CAS  Article  Google Scholar 

  62. 62.

    Stickel JJ, Elander RT, Mcmillan JD, Brunecky R (2014) Enzymatic Hydrolysis of Lignocellulosic Biomass. In: Bioprocessing of Renewable Resources to Commodity Bioproducts, pp 77-103. https://doi.org/10.1002/9781118845394.ch4

    Google Scholar 

  63. 63.

    Suzuki S, Takeoka Y, Rikukawa M, Yoshizawa-Fujita M (2018) Brønsted acidic ionic liquids for cellulose hydrolysis in an aqueous medium: structural effects on acidity and glucose yield. RSC Adv 8:14623–14632

    CAS  Article  Google Scholar 

  64. 64.

    Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975

    CAS  Article  Google Scholar 

  65. 65.

    Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng. https://doi.org/10.1016/j.ymben.2012.08.007

    Article  PubMed  Google Scholar 

  66. 66.

    Tomaszewska L, Rywińska A, Gładkowski W (2012) Production of erythritol and mannitol by Yarrowia lipolytica yeast in media containing glycerol. J Ind Microbiol Biotechnol 39:1333–1343

    CAS  Article  Google Scholar 

  67. 67.

    Wagner JM, Alper HS (2016) Synthetic biology and molecular genetics in non-conventional yeasts: current tools and future advances. Fungal Genet Biol 89:126–136. https://doi.org/10.1016/j.fgb.2015.12.001

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Walker C, Ryu S, Trinh CT (2019) Exceptional solvent tolerance in Yarrowia lipolytica is enhanced by sterols. Metab Eng 54:83–95. https://doi.org/10.1016/j.ymben.2019.03.003

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Watanabe M, Thomas ML, Zhang S, Ueno K, Yasuda T, Dokko K (2017) Application of ionic liquids to energy storage and conversion materials and devices. Chem Rev 117:7190–7239. https://doi.org/10.1021/acs.chemrev.6b00504

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Yoo CG, Pu Y, Ragauskas AJ (2017) Ionic liquids: promising green solvents for lignocellulosic biomass utilization. Curr Opin Green and Sustain Chem 5:5–11. https://doi.org/10.1016/j.cogsc.2017.03.003

    Article  Google Scholar 

  71. 71.

    Yu J, Landberg J, Shavarebi F, Bilanchone V, Okerlund A, Wanninayake U, Zhao L, Kraus G, Sandmeyer S (2018) Bioengineering triacetic acid lactone production in Yarrowia lipolytica for pogostone synthesis. Biotechnol Bioeng 115:2383–2388. https://doi.org/10.1002/bit.26733

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Zeng S, Zhang X, Bai L, Zhang X, Wang H, Wang J, Bao D, Li M, Liu X, Zhang S (2017) Ionic-liquid-based CO2 capture systems: structure, interaction and process. Chem Rev 117:9625–9673. https://doi.org/10.1021/acs.chemrev.7b00072

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–327

    CAS  Article  Google Scholar 

  74. 74.

    Zinjarde S, Apte M, Mohite P, Kumar AR (2014) Yarrowia lipolytica and pollutants: interactions and applications. Biotechnol Adv 32:920–933. https://doi.org/10.1016/j.biotechadv.2014.04.008

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Zvyagilskaya R, Andreishcheva E, Soares MIM, Khozin I, Berhe A, Persson BL (2001) Isolation and characterization of a novel leaf-inhabiting osmo-, salt-, and alkali-tolerant Yarrowia lipolytica yeast strain. J Basic Microbiol 41:289–303. https://doi.org/10.1002/1521-4028(200110)41:5

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Lars Lauffer, Maya Venkataraman, and Eden Williams for helpful assistance with general molecular cloning procedures. We would also like to thank the Brennecke group at UT Austin for providing the alternative ionic liquids (i.e., all IILs other than [EMIM]OAc and [EMIM]Cl) used for supplementary S. cerevisiae BY4741 tolerance testing.

Funding

This work was funded through the Camille and Henry Dreyfus Foundation to H.S.A. J.M.W. and K.B.R. acknowledge additional support from the National Science Foundation (NSF) Graduate Research Fellowship Program (DGE-1110007).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hal S. Alper.

Ethics declarations

Conflict of interest

The authors declare no commercial or financial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2206 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reed, K.B., Wagner, J.M., d’Oelsnitz, S. et al. Improving ionic liquid tolerance in Saccharomyces cerevisiae through heterologous expression and directed evolution of an ILT1 homolog from Yarrowia lipolytica. J Ind Microbiol Biotechnol 46, 1715–1724 (2019). https://doi.org/10.1007/s10295-019-02228-9

Download citation

Keywords

  • Ionic liquids
  • Saccharomyces cerevisiae
  • Yarrowia lipolytica
  • Imidazolium ionic liquid tolerance
  • Directed evolution