Skip to main content
Log in

Production of semi-biosynthetic nepetalactone in yeast

  • Natural Products - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Microbial-based production of natural products provides a promising alternative to synthetic production and isolation from the native producer. The recently discovered NEPS1 cyclase/oxidase completes the biosynthetic pathway to nepetalactone, a biologically relevant iridoid known as both an insect repellent and cat attractant. In this work, we employ yeast-based whole-cell biocatalysis to produce semi-biosynthetic nepetalactone from a low-cost precursor via a four-step enzymatic process. The dependence of product yield on bioprocess parameters ranging from induction of gene expression to substrate loading was investigated. Subsequent factorial design and response surface methodology optimization approach enabled a 5.8-fold increase in nepetalactone titer to 153 mg/L. Our study provides insights into strategies for operating plasmid-based bioconversion of a fed substrate and sets the stage for scalable, microbial synthesis of nepetalactone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bates RB, Eisenbraun EJ, Mcelvain SM (1958) The configurations of the nepetalactones and related compounds. J Am Chem Soc 80:3420–3424. https://doi.org/10.1021/Ja01546a054

    Article  CAS  Google Scholar 

  2. Billingsley JM, DeNicola AB, Barber JS, Tang MC, Horecka J, Chu A, Garg NK, Tang Y (2017) Engineering the biocatalytic selectivity of iridoid production in Saccharomyces cerevisiae. Metab Eng 44:117–125. https://doi.org/10.1016/j.ymben.2017.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Billingsley JM, DeNicola AB, Tang Y (2016) Technology development for natural product biosynthesis in Saccharomyces cerevisiae. Curr Opin Biotechnol 42:74–83. https://doi.org/10.1016/j.copbio.2016.02.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Curran KA, Karim AS, Gupta A, Alper HS (2013) Use of expression-enhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications. Metab Eng 19:88–97. https://doi.org/10.1016/j.ymben.2013.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Da Silva NA, Srikrishnan S (2012) Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae. FEMS Yeast Res 12:197–214. https://doi.org/10.1111/j.1567-1364.2011.00769.x

    Article  CAS  PubMed  Google Scholar 

  6. Deschamps N (2017) Dog and cat toys: U.S. pet market trends and opportunities. Packaged Facts

  7. Galanie S, Thodey K, Trenchard IJ, Filsinger Interrante M, Smolke CD (2015) Complete biosynthesis of opioids in yeast. Science 349:1095–1100. https://doi.org/10.1126/science.aac9373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Harvey CJB, Tang MC, Schlecht U, Horecka J, Fischer CR, Lin HC, Li J, Naughton B, Cherry J, Miranda M, Li YF, Chu AM, Hennessy JR, Vandova GA, Inglis D, Aiyar RS, Steinmetz LM, Davis RW, Medema MH, Sattely E, Khosla C, St Onge RP, Tang Y, Hillenmeyer ME (2018) HEx: a heterologous expression platform for the discovery of fungal natural products. Sci Adv. https://doi.org/10.1126/sciadv.aar5459

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ippoliti FM, Barber JS, Tang Y, Garg NK (2018) Synthesis of 8-hydroxygeraniol. J Org Chem 83:11323–11326. https://doi.org/10.1021/acs.joc.8b01544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Javed M (2019) Insect repellent: the Global Market to 2023. bccResearch

  11. Kratzer R, Woodley JM, Nidetzky B (2015) Rules for biocatalyst and reaction engineering to implement effective, NAD(P)H-dependent, whole cell bioreductions. Biotechnol Adv 33:1641–1652. https://doi.org/10.1016/j.biotechadv.2015.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee KM, DaSilva NA (2005) Evaluation of the Saccharomyces cerevisiae ADH2 promoter for protein synthesis. Yeast 22:431–440. https://doi.org/10.1002/yea.1221

    Article  CAS  PubMed  Google Scholar 

  13. Lichman BR, Kamileen MO, Titchiner GR, Saalbach G, Stevenson CEM, Lawson DM, O’Connor SE (2019) Uncoupled activation and cyclization in catmint reductive terpenoid biosynthesis. Nat Chem Biol 15:71–79. https://doi.org/10.1038/s41589-018-0185-2

    Article  CAS  PubMed  Google Scholar 

  14. Lin B, Tao Y (2017) Whole-cell biocatalysts by design. Microb Cell Fact 16:106. https://doi.org/10.1186/s12934-017-0724-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Luo X, Reiter MA, d’Espaux L, Wong J, Denby CM, Lechner A, Zhang Y, Grzybowski AT, Harth S, Lin W, Lee H, Yu C, Shin J, Deng K, Benites VT, Wang G, Baidoo EEK, Chen Y, Dev I, Petzold CJ, Keasling JD (2019) Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature. https://doi.org/10.1038/s41586-019-0978-9

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mandenius CF, Brundin A (2008) Bioprocess optimization using design-of-experiments methodology. Biotechnol Progr 24:1191–1203. https://doi.org/10.1021/bp.67

    Article  CAS  Google Scholar 

  17. Tundis R, Loizzo MR, Menichini F, Statti GA, Menichini F (2008) Biological and pharmacological activities of iridoids: recent developments. Mini Rev Med Chem 8:399–420

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is funded by the NCCIH 1R01AT010001-01. JMB was supported by the NIH Predoctoral Training Grant T32 GM067555.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 753 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Billingsley, J.M., Anguiano, J.L. & Tang, Y. Production of semi-biosynthetic nepetalactone in yeast. J Ind Microbiol Biotechnol 46, 1365–1370 (2019). https://doi.org/10.1007/s10295-019-02199-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-019-02199-x

Navigation