Improved production of clavulanic acid by reverse engineering and overexpression of the regulatory genes in an industrial Streptomyces clavuligerus strain

Abstract

Genomic analysis of the clavulanic acid (CA)-high-producing Streptomyces clavuligerus strains, OL13 and OR, developed through random mutagenesis revealed a frameshift mutation in the cas1 gene-encoding clavaminate synthase 1. Overexpression of the intact cas1 in S. clavuligerus OR enhanced the CA titer by approximately 25%, producing ~ 4.95 g/L of CA, over the OR strain in the flask culture. Moreover, overexpression of the pathway-specific positive regulatory genes, ccaR and claR, in the OR strain improved CA yield by approximately 43% (~ 5.66 g/L) in the flask. However, co-expression of the intact cas1 with ccaR-claR did not further improve CA production. In the 7 L fermenter culture, maximum CA production by the OR strain expressing the wild-type cas1 and ccaR-claR reached approximately 5.52 g/L and 6.01 g/L, respectively, demonstrating that reverse engineering or simple rational metabolic engineering is an efficient method for further improvement of industrial strains.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Arulanantham H, Kershaw NJ, Hewitson KS, Hughes CE, Thirkettle JE, Schofield CJ (2006) ORF17 from the clavulanic acid biosynthesis gene cluster catalyzes the ATP-dependent formation of N-glycyl-clavaminic acid. J Biol Chem 281:279–287

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Bierman M, Logan R, O’Brien K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Cho H, Uehara T, Bernhardt TG (2014) Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell 159(6):1300–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Gao W, Wu Z, Sun J, Ni X, Xia H (2017) Modulation of kanamycin B and kanamycin A biosynthesis in Streptomyces kanamyceticus via metabolic engineering. PLoS One 12(7):e0181971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Geddes AM, Klugman KP, Rolinson GN (2007) Introduction: historical perspective and development of amoxicillin/clavulanate. Int J Antimicrob Agents 30:109–112

    Article  CAS  Google Scholar 

  6. 6.

    Gravius B, Benzmalinovic T, Hranueli D, Cullum J (1993) Genetic instability and strain degeneration in Streptomyces rimosus. Appl Environ Microbiol 59(7):2220–2228

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Hamed RB, Gomez-Castellanos JR, Henry L, Ducho C, McDonough MA, Schofield CJ (2013) The enzymes of β-lactam biosynthesis. Nat Prod Rep 30(1):21–107

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Jensen SE (2012) Biosynthesis of clavam metabolites. J Ind Microbiol Biotechnol 39(10):1407–1419

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hoopwood DA (2000) Practical Streptomyces genetics. John Innes Centre, Norwich

    Google Scholar 

  10. 10.

    Kim SJ, Kim JO, Shin CH, Park HW, Kim CW (2009) An approach to strain improvement and enhanced production of clavulanic acid in Streptomyces clavuligerus. Biosci Biotechnol Biochem 73(1):160–164

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Kizildoğan AK, Jaccard GV, Mutlu A, Sertdemir I, Özcengiz G (2017) Genetic engineering of an industrial strain of Streptomyces clavuligerus for further enhancement of clavulanic acid production. Turk J Biol 1(2):342–353

    Article  CAS  Google Scholar 

  12. 12.

    Liras P, Gomez-Escribano JP, Santamarta I (2008) Regulatory mechanisms controlling antibiotic production in Streptomyces clavuligerus. J Ind Microbiol Biotechnol 35(7):667

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Lum AM, Huang J, Hutchinson CR, Kao CM (2004) Reverse engineering of industrial pharmaceutical-producing actinomycete strains using DNA microarrays. Metab Eng 6(3):186–196

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    MacKenzie AK, Kershaw NJ, Hernandez H, Robinson CV, Schofield CJ, Andersson I (2007) Clavulanic acid dehydrogenase: structural and biochemical analysis of the final step in the biosynthesis of the β-lactamase inhibitor clavulanic acid. Biochemistry 46(6):1523–1533

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Medema MH, Alam MT, Heijne WH, van den Berg MA, Müller U, Trefzer A, Bovenberg RAL, Breitling R, Takano E (2011) Genome-wide gene expression changes in an industrial clavulanic acid overproduction strain of Streptomyces clavuligerus. Microb Biotechnol 4(2):300–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Miao V, Coëffet-Le Gal MF, Nguyen K, Brian P, Penn J, Whiting A, Steele J, Kau D, Martin S, Ford R, Gibson T, Bouchard M, Wrigley SK, Baltz RH (2006) Genetic engineering in Streptomyces roseosporus to produce hybrid lipopeptide antibiotics. Chem Biol 13(3):269–276

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Mo S, Kim DH, Lee JH, Park JW, Basnet DB, Ban YH, Yoo YJ, Chen SW, Park SR, Choi EA, Kim E, Jin YY, Lee SK, Park JY, Liu Y, Lee MO, Lee KS, Kim SJ, Kim D, Park BC, Lee SG, Kwon HJ, Suh JW, Moore BS, Lim SK, Yoon YJ (2011) Biosynthesis of the allylmalonyl-CoA extender unit for the FK506 polyketide synthase proceeds through a dedicated polyketide synthase and facilitates the mutasynthesis of analogues. J Am Chem Soc 133:976–985

    Article  CAS  Google Scholar 

  18. 18.

    Mosher RH, Paradkar AS, Anders C, Barton B, Jensen SE (1999) Genes specific for the biosynthesis of clavam metabolites antipodal to clavulanic acid are clustered with the gene for clavaminate synthase 1 in Streptomyces clavuligerus. Antimicrob Agents Chemother 43:1215–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Neves AA, Pereira DA, Vieira LM, Menzes JC (2000) Real time monitoring biomass concentration in Streptomyces clavuligerus cultivations with industrial media using a capacitance probe. J Biotechnol 84:45–52

    Article  CAS  Google Scholar 

  20. 20.

    Ni X, Sun Z, Gu Y, Cui H, Xia H (2016) Assembly of a novel biosynthetic pathway for gentamicin B production in Micromonospora echinospora. Microb Cell Fact 15(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Paradkar AS, Aidoo KA, Jensen SE (1998) A pathway-specific transcriptional activator regulates late steps of clavulanic acid biosynthesis in Streptomyces clavuligerus. Mol Microbiol 27:831–843

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Paradkar AS, Jensen SE (1995) Functional analysis of the gene encoding the clavaminate synthase 2 isoenzyme involved in clavulanic acid biosynthesis in Streptomyces clavuligerus. J Biotechnol 177:1307–1314

    CAS  Google Scholar 

  23. 23.

    Pérez-Llarena FJ, Liras P, Rodríguez-García A, Martín JF (1997) A regulatory gene (ccaR) required for cephamycin and clavulanic acid production in Streptomyces clavuligerus: amplification results in overproduction of both beta-lactam compounds. J Bacteriol 179:2053–2059

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Pérez-Redondo R, Rodríguez-García A, Martín JF, Liras P (1998) The claR gene of Streptomyces clavuligerus, encoding a LysR type regulatory protein controlling clavulanic acid biosynthesis, is linked to the clavulanate-9-aldehyde reductase (car) gene. Gene 211:311–321

    Article  PubMed  Google Scholar 

  25. 25.

    Pullan ST, Chandra G, Bibb MJ, Merrick M (2011) Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes. BMC Genomics 12:175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Qin R, Zhong C, Zong G, Fu J, Pang X, Cao G (2017) Improvement of clavulanic acid production in Streptomyces clavuligerus F613-1 by using a claR-neo reporter strategy. Electron J Biotechnol 28:41–46

    Article  CAS  Google Scholar 

  27. 27.

    Reeves AR, Cernota WH, Brikun IA, Wesley RK, Weber JM (2004) Engineering precursor flow for increased erythromycin production in Aeromicrobium erythreum. Metab Eng 6(4):300–312

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Rowlands RT (1984) Industrial strain improvement: mutagenesis and random screening procedures. Enzyme Microb Technol 6(1):3–10

    Article  CAS  Google Scholar 

  29. 29.

    Schmitt-John T, Engels JE (1992) Promoter constructions for efficient secretion expression in Streptomyces lividans. Appl Microbiol Biotechnol 36:493–498

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Song JY, Jeong H, Yu DS, Fischbach MA, Park HS, Kim JJ, Seo JS, Jensen SE, Oh TK, Lee KJ, Kim JF (2010) Draft genome sequence of Streptomyces clavuligerus NRRL 3585, a producer of diverse secondary metabolites. J Bacteriol 192(23):6317–6318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Tahlan K, Jensen SE (2013) Origins of the β-lactam rings in natural products. J Antibiot 66(7):401

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Tarbuck LA, Ng MH, Leigh JR, Tampion J (1985) Estimation of the progress of Streptomyces clavuligerus fermentations for improved on-line control of antibiotic production. Model Control Biotechnol Process 18:191–198

    Google Scholar 

  33. 33.

    Ünsaldı E, Kurt-Kızıldoğan A, Voigt B, Becher D, Özcengiz G (2017) Proteome-wide alterations in an industrial clavulanic acid producing strain of Streptomyces clavuligerus. Synth Syst Biotechnol 2(1):39–48

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean Government (MSIT) (2015K1A1A2028365, 2019R1A2B5B03069338), Bio and Medical Technology Development Program (2018M3A9F3079662, 2018M3A9F3079664) through NRF funded by MSIT, and the Intelligent Synthetic Biology Center of the Global Frontier Project funded by MSIT (20110031961).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ho Jeong Kwon or Yeo Joon Yoon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 35 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cho, H.S., Jo, J.C., Shin, CH. et al. Improved production of clavulanic acid by reverse engineering and overexpression of the regulatory genes in an industrial Streptomyces clavuligerus strain. J Ind Microbiol Biotechnol 46, 1205–1215 (2019). https://doi.org/10.1007/s10295-019-02196-0

Download citation

Keywords

  • Clavulanic acid
  • Streptomyces clavuligerus
  • Reverse engineering
  • Metabolic engineering