Skip to main content
Log in

Effect of applied voltage and temperature on methane production and microbial community in microbial electrochemical anaerobic digestion systems treating swine manure

Journal of Industrial Microbiology & Biotechnology

Abstract

Microbial electrochemical technology (MET) that can harvest electricity/valuable materials and enhance the efficiency of conventional biological processes through the redox reaction of organic/inorganic compounds has attracted considerable attention. MET-based anaerobic digestion (AD) systems treating swine manure were operated at different applied voltages (0.1, 0.3, 0.5, 0.7, and 0.9 V) and temperatures (25, 35, and 45 °C). Among the MET-based AD systems with different applied voltages at 35 °C, M4 at 0.7 V showed the highest methane production (2.96 m3-CH4/m3) and methane yield (0.64 m3-CH4/kg-VS). The methane production and yield increased with increasing temperature at an applied voltage of 0.7 V. Nevertheless, the MET-based AD systems (LM at 25 °C and 0.7V) showed competitive AD performance (2.33 m3-CH4/m3 and 0.53 m3-CH4/VS) compared with the conventional AD system (35 °C). The microbial community was affected by the applied voltage and temperature, and hydrogenotrophic methanogens such as M. flavescens, M. hungatei, and M. thermautotrophicus were mainly responsible for methane production in MET-based AD systems. Therefore, the methane production can be enhanced by an applied voltage or by direct interspecies electron transfer because M. flavescens and M. thermautotrophicus were especially predominant in cathode of MET-based AD systems. The MET-based AD systems can help enhance biogas production from swine manure with no significant change in methane content. Furthermore, MET-based AD systems will be a promising AD system through low material development and the optimal operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Barber RD, Zhang L, Harnack M, Olson MV, Kaul R, Ingram-Smith C, Smith KS (2011) Complete genome sequence of Methanosaeta concilii, a specialist in aceticlastic methanogenesis. J Bacteriol 193:3668–3669. https://doi.org/10.1128/JB.05031-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bo T, Zhu X, Zhang L, Tao Y, He X, Li D, Yan Z (2014) A new upgraded biogas production process: coupling microbial electrolysis cell and anaerobic digestion in single-chamber, barrel-shape stainless steel reactor. Electrochem Commun 45:67–70. https://doi.org/10.1016/j.elecom.2014.05.026

    Article  CAS  Google Scholar 

  3. Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555. https://doi.org/10.1128/AEM.69.3.1548-1555.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bonmati A, Flotats X, Mateu L, Campos E (2001) Study of thermal hydrolysis as a pretreatment to mesophilic anaerobic digestion of pig slurry. Water Sci Technol 44:109–116. https://doi.org/10.2166/wst.2001.0193

    Article  CAS  PubMed  Google Scholar 

  5. Bouanane-Darenfed A, Fardeau M, Grégoire P, Joseph M, Kebbouche-Gana S, Benayad T, Hacene H, Cayol J, Ollivier B (2011) Caldicoprobacteralgeriensis sp. nov. A new thermophilic anaerobic, xylanolytic bacterium isolated from an Algerian hot spring. Curr Microbiol 62:826–832. https://doi.org/10.1007/s00284-010-9789-9

    Article  CAS  PubMed  Google Scholar 

  6. Boušková A, Dohanyos M, Schmidt JE, Angelidaki I (2005) Strategies for changing temperature from mesophilic to thermophilic conditions in anaerobic CSTR reactors treating sewage sludge. Water Res 39:1481–1488. https://doi.org/10.1016/j.watres.2004.12.042

    Article  CAS  PubMed  Google Scholar 

  7. Chae K, Jang A, Yim S, Kim IS (2008) The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Bioresour Technol 99:1–6. https://doi.org/10.1016/j.biortech.2006.11.063

    Article  CAS  PubMed  Google Scholar 

  8. Chen Y, Yu B, Yin C, Zhang C, Dai X, Yuan H, Zhu N (2016) Biostimulation by direct voltage to enhance anaerobic digestion of waste activated sludge. RSC Adv 6:1581–2158. https://doi.org/10.1039/c5ra24134k

    Article  CAS  Google Scholar 

  9. Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43:3953–3958. https://doi.org/10.1021/es803531g

    Article  CAS  PubMed  Google Scholar 

  10. Chynoweth DP, Owens JM, Legrand R (2001) Renewable methane from anaerobic digestion of biomass. Renew Energy 22:1–8. https://doi.org/10.1016/S0960-1481(00)00019-7

    Article  CAS  Google Scholar 

  11. De Vrieze J, Gildemyn S, Arends JB, Vanwonterghem I, Verbeken K, Boon N, Verstraete W, Tyson GW, Hennebel T, Rabaey K (2014) Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion. Water Res 54:211–221. https://doi.org/10.1016/j.watres.2014.01.044

    Article  CAS  PubMed  Google Scholar 

  12. Ding A, Yang Y, Sun G, Wu D (2016) Impact of applied voltage on methane generation and microbial activities in an anaerobic microbial electrolysis cell (MEC). Chem Eng J 283:260–265. https://doi.org/10.1016/j.cej.2015.07.054

    Article  CAS  Google Scholar 

  13. Dou Z, Dykstra CM, Pavlostathis SG (2018) Bioelectrochemically assisted anaerobic digestion system for biogas upgrading and enhanced methane production. Sci Total Environ 633:1012–1021. https://doi.org/10.1016/j.scitotenv.2018.03.255

    Article  CAS  PubMed  Google Scholar 

  14. Feng L, Ottosen LDM, Møller HB, Bester K (2017) Removal of antibiotics during the anaerobic digestion of pig manure. Sci Total Environ 603:219–225. https://doi.org/10.1016/j.scitotenv.2017.05.280

    Article  CAS  PubMed  Google Scholar 

  15. Feng Q, Song Y, Bae B (2016) Influence of applied voltage on the performance of bioelectrochemical anaerobic digestion of sewage sludge and planktonic microbial communities at ambient temperature. Bioresour Technol 220:500–508. https://doi.org/10.1016/j.biortech.2016.08.085

    Article  CAS  PubMed  Google Scholar 

  16. Feng Y, Zhang Y, Chen S, Quan X (2015) Enhanced production of methane from waste activated sludge by the combination of high-solid anaerobic digestion and microbial electrolysis cell with iron–graphite electrode. Chem Eng J 259:787–794. https://doi.org/10.1016/j.cej.2014.08.048

    Article  CAS  Google Scholar 

  17. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA 103:11358–11363. https://doi.org/10.1073/pnas.0604517103

    Article  CAS  PubMed  Google Scholar 

  18. Gunsalus RP, Cook LE, Crable B, Rohlin L, McDonald E, Mouttaki H, Sieber JR, Poweleit N, Zhou H, Lapidus AL (2016) Complete genome sequence of Methanospirillum hungatei type strain JF1. Stand Genom Sci 11:2. https://doi.org/10.1186/s40793-015-0124-8

    Article  CAS  Google Scholar 

  19. Hupfauf S, Plattner P, Wagner AO, Kaufmann R, Insam H, Podmirseg SM (2018) Temperature shapes the microbiota in anaerobic digestion and drives efficiency to a maximum at 45 °C. Bioresour Technol 269:309–318. https://doi.org/10.1016/j.biortech.2018.08.106

    Article  CAS  PubMed  Google Scholar 

  20. Karakashev D, Batstone DJ, Trably E, Angelidaki I (2006) Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae. Appl Environ Microbiol 72:5138–5141. https://doi.org/10.1128/AEM.00489-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kern T, Fischer MA, Deppenmeier U, Schmitz RA, Rother M (2016) Methanosarcina flavescens sp. nov., a methanogenic archaeon isolated from a full-scale anaerobic digester. Int J Syst Evol Microbiol 66:1533–1538. https://doi.org/10.1099/ijsem.0.000894

    Article  CAS  PubMed  Google Scholar 

  22. Li K, Liu R, Sun C (2015) Comparison of anaerobic digestion characteristics and kinetics of four livestock manures with different substrate concentrations. Bioresour Technol 198:133–140. https://doi.org/10.1016/j.biortech.2015.08.151

    Article  CAS  PubMed  Google Scholar 

  23. Li N, He L, Lu Y, Zeng RJ, Sheng G (2017) Robust performance of a novel anaerobic biofilm membrane bioreactor with mesh filter and carbon fiber (ABMBR) for low to high strength wastewater treatment. Chem Eng J 313:56–64. https://doi.org/10.1016/j.cej.2016.12.073

    Article  CAS  Google Scholar 

  24. Liang Y, Li X, Zhang J, Zhang L, Cheng B (2017) Effect of microscale ZVI/magnetite on methane production and bioavailability of heavy metals during anaerobic digestion of diluted pig manure. Environ Sci Pollut Res 24:12328–12337. https://doi.org/10.1007/s11356-017-8832-9

    Article  CAS  Google Scholar 

  25. Liu D, Zhang L, Chen S, Buisman C, ter Heijne A (2016) Bioelectrochemical enhancement of methane production in low temperature anaerobic digestion at 10 °C. Water Res 99:281–287. https://doi.org/10.1016/j.watres.2016.04.020

    Article  CAS  PubMed  Google Scholar 

  26. Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381. https://doi.org/10.1038/nrmicro2113

    Article  CAS  PubMed  Google Scholar 

  27. Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337:686–690. https://doi.org/10.1126/science.1217412

    Article  CAS  PubMed  Google Scholar 

  28. Morita M, Malvankar NS, Franks AE, Summers ZM, Giloteaux L, Rotaru AE, Rotaru C, Lovley DR (2011) Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates. MBio 2:e00159–211. https://doi.org/10.1128/mBio.00159-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rotaru A, Shrestha PM, Liu F, Shrestha M, Shrestha D, Embree M, Zengler K, Wardman C, Nevin KP, Lovley DR (2014) A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ Sci 7:408–415. https://doi.org/10.1039/C3EE42189A

    Article  CAS  Google Scholar 

  30. Rozendal RA, Hamelers HV, Rabaey K, Keller J, Buisman CJ (2008) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26:450–459. https://doi.org/10.1016/j.tibtech.2008.04.008

    Article  CAS  Google Scholar 

  31. Sangeetha T, Guo Z, Liu W, Gao L, Wang L, Cui M, Chen C, Wang A (2017) Energy recovery evaluation in an up flow microbial electrolysis coupled anaerobic digestion (ME-AD) reactor: role of electrode positions and hydraulic retention times. Appl Energy 206:1214–1224. https://doi.org/10.1016/j.apenergy.2017.10.026

    Article  CAS  Google Scholar 

  32. Song Y, Feng Q, Ahn Y (2016) Performance of the bio-electrochemical anaerobic digestion of sewage sludge at different hydraulic retention times. Energy Fuels 30:352–359. https://doi.org/10.1021/acs.energyfuels.5b02003

    Article  CAS  Google Scholar 

  33. Tartakovsky B, Mehta P, Bourque J, Guiot S (2011) Electrolysis-enhanced anaerobic digestion of wastewater. Bioresour Technol 102:5685–5691. https://doi.org/10.1016/j.biortech.2011.02.097

    Article  CAS  PubMed  Google Scholar 

  34. van Eerten-Jansen MC, Jansen NC, Plugge CM, de Wilde V, Buisman CJ, ter Heijne A (2015) Analysis of the mechanisms of bioelectrochemical methane production by mixed cultures. J Chem Technol Biotechnol 90:963–970. https://doi.org/10.1002/jctb.4413

    Article  CAS  Google Scholar 

  35. Villano M, Ralo C, Zeppilli M, Aulenta F, Majone M (2016) Influence of the set anode potential on the performance and internal energy losses of a methane-producing microbial electrolysis cell. Bioelectrochemistry 107:1–6. https://doi.org/10.1016/j.bioelechem.2015.07.008

    Article  CAS  PubMed  Google Scholar 

  36. Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M (2010) Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour Technol 101:3085–3090. https://doi.org/10.1016/j.biortech.2009.12.077

    Article  CAS  PubMed  Google Scholar 

  37. Wang A, Liu W, Cheng S, Xing D, Zhou J, Logan BE (2009) Source of methane and methods to control its formation in single chamber microbial electrolysis cells. Int J Hydrog Energy 34:3653–3658. https://doi.org/10.1016/j.ijhydene.2009.03.005

    Article  CAS  Google Scholar 

  38. Wu X, Shi K, Xu X, Wu M, Oren A, Zhu X (2010) Alkaliphilus halophilus sp. nov., a strictly anaerobic and halophilic bacterium isolated from a saline lake, and emended description of the genus Alkaliphilus. Int J Syst Evol Microbiol 60:2898–2902. https://doi.org/10.1099/ijs.0.014084-0

    Article  CAS  PubMed  Google Scholar 

  39. Zeikus JG, Wolfe RS (1972) Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109:707–715

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zheng Z, Liu J, Yuan X, Wang X, Zhu W, Yang F, Cui Z (2015) Effect of dairy manure to switchgrass co-digestion ratio on methane production and the bacterial community in batch anaerobic digestion. Appl Energy 151:249–257. https://doi.org/10.1016/j.apenergy.2015.04.078

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported financially by the 2015 Inje University Research Grant, the Gyeongnam Green Environmental Center of Korea, and the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Science and ICT (NRF-2015R1C1A1A01054204 and 2018R1D1A1B07046741).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O-Seob Kwon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Kim, S. & Kwon, OS. Effect of applied voltage and temperature on methane production and microbial community in microbial electrochemical anaerobic digestion systems treating swine manure. J Ind Microbiol Biotechnol 46, 911–923 (2019). https://doi.org/10.1007/s10295-019-02182-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-019-02182-6

Keywords

Navigation