Advertisement

Influence of R and S enantiomers of 1-octen-3-ol on gene expression of Penicillium chrysogenum

  • Guohua YinEmail author
  • Yuliang Zhang
  • Maojie Fu
  • Sui Sheng T. Hua
  • Qixing Huang
  • Kayla K. Pennerman
  • Guangxi Wu
  • Wayne M. JurickII
  • Samantha Lee
  • Lijing Bu
  • Hui ZhaoEmail author
  • Joan W. Bennett
Genetics and Molecular Biology of Industrial Organisms - Original Paper
  • 76 Downloads

Abstract

Inhibition of spore germination offers an attractive and effective target for controlling fungal species involved in food spoilage. Mushroom alcohol (1-octen-3-ol) functions as a natural self-inhibitor of spore germination for many fungi and, therefore, provides a useful tool for probing the molecular events controlling the early stages of fungal growth. In Penicillium spp., the R and S enantiomers of 1-octen-3-ol delayed spore germination and sporulation in four species of Penicillium involved in soils of fruit and grains, but to different degrees. Because of its well-annotated genome, we used Penicillium chrysogenum to perform a comprehensive comparative transcriptomic analysis of cultures treated with the two enantiomers. Altogether, about 80% of the high-quality reads could be mapped to 11,396 genes in the reference genome. The top three active pathways were metabolic (978 transcripts), biosynthesis of secondary metabolites (420 transcripts), and microbial metabolism in diverse environments (318 transcripts). When compared to the control, treatment with (R)-(-)-1-octen-3-ol affected the transcription levels of 91 genes, while (S)-(+)-1-octen-3-ol affected only 41 genes. Most of the affected transcripts were annotated and predicted to be involved in transport, establishment of localization, and transmembrane transport. Alternative splicing and SNPs’ analyses indicated that, compared to the control, the R enantiomer had greater effects on the gene expression pattern of Penicillium chrysogenum than the S enantiomer. A qRT-PCR analysis of 28 randomly selected differentially expressed genes confirmed the transcriptome data. The transcriptomic data have been deposited in NCBI SRA under the accession number SRX1065226.

Keywords

Volatile organic compounds (VOCs) (R)-(-)-1-octen-3-ol (S)-(+)-1-octen-3-ol Transcriptome analysis Fungal storage contaminants Penicillium chrysogenum 

Notes

Acknowledgements

This work was primarily funded by the Special Fund for Agro-scientific Research in the Public Interest of the People’s Republic of China (Grant No. 201403075) and partially funded by the USDA-ARS Cooperative Agreement (Grant No. 2-47012). The funders played no role in experimental design, execution, data analysis, or decision to publish. Use of a company or product name by the U.S. Department of Agriculture does not imply approval or recommendation of the product to the exclusion of others that may also be suitable.

Supplementary material

10295_2019_2168_MOESM1_ESM.tif (493 kb)
Supplementary material 1 (TIFF 493 kb)
10295_2019_2168_MOESM2_ESM.tif (6.4 mb)
Supplementary material 2 (TIFF 6516 kb)
10295_2019_2168_MOESM3_ESM.xlsx (68 kb)
Supplementary material 3 (XLSX 67 kb)
10295_2019_2168_MOESM4_ESM.docx (21 kb)
Supplementary material 4 (DOCX 20 kb)

References

  1. 1.
    Ballester AR, Marcet Houben M, Levin E, Sela N, Selma Lázaro C, Carmona L, Wisniewski M, Droby S, González Candelas L, Gabaldón T (2015) Genome, transcriptome, and functional analyses of Penicillium expansum provide new insights into secondary metabolism and pathogenicity. Mol Plant Microbe Interact 28(3):232–248Google Scholar
  2. 2.
    Bennett JW, Klich M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516Google Scholar
  3. 3.
    Berendsen RL, Kalkhove SI, Lugones LG, Baars JJ, Wösten HA, Bakker PA (2013) Effects of the mushroom-volatile 1-octen-3-ol on dry bubble disease. Appl Microbiol Biotechnol 97(12):5535–5543Google Scholar
  4. 4.
    Blankenship SM, Dole JM (2003) 1-Methylcyclopropene: a review. Postharvest Biol Technol 28(1):1–25Google Scholar
  5. 5.
    Bohbot JD, Dickens JC (2009) Characterization of an enantioselective odorant receptor in the yellow fever mosquito Aedes aegypti. PLoS One 4(9):e7032Google Scholar
  6. 6.
    Chang PK, Hua SST, Sarreal SBL, Li RW (2015) Suppression of aflatoxin biosynthesis in Aspergillus flavus by 2-phenylethanol is associated with stimulated growth and decreased degradation of branched-chain amino acids. Toxins 7(10):3887–3902Google Scholar
  7. 7.
    Chitarra GS, Abee T, Rombouts FM, Dijksterhuis J (2005) 1-Octen-3-ol inhibits conidia germination of Penicillium paneum despite of mild effects on membrane permeability, respiration, intracellular pH, and changes the protein composition. FEMS Microbiol Ecol 54(1):67–75Google Scholar
  8. 8.
    Chitarra GS, Abee T, Rombouts FM, Posthumus MA, Dijksterhuis J (2004) Germination of Penicillium paneum conidia is regulated by 1-octen-3-ol, a volatile self-inhibitor. Appl Environ Microbiol 70(5):2823–2829Google Scholar
  9. 9.
    Cilek JE, Hallmon CF, Johnson R (2011) Semi-field comparison of the BG Lure, nonanal, and 1-octen-3-ol to attract adult mosquitoes in northwestern Florida. J Am Mosquito Control Assoc 27(4):393–397Google Scholar
  10. 10.
    Combet E, Eastwood DC, Burton KS, Henderson J (2006) Eight-carbon volatiles in mushrooms and fungi: Properties, analysis, and biosynthesis. Mycoscience 47:317–326Google Scholar
  11. 11.
    Cook JI, Majeed S, Ignell R, Pickett JA, Birkett MA, Logan JG (2011) Enantiomeric selectivity in behavioural and electrophysiological responses of Aedes aegypti and Culex quinquefasciatus mosquitoes. Bull Entomol Res 101(5):541–550Google Scholar
  12. 12.
    Cruz AF, Hamel C, Yang C, Matsubara T, Gan Y, Singh AK, Kuwada K, Ishii T (2012) Phytochemicals to suppress Fusarium head blight in wheat-chickpea rotation. Phytochemistry 78:72–80Google Scholar
  13. 13.
    De Lucca AJ, Carter Wientjes CH, Boué S, Bhatnagar D (2011) Volatile trans-2-hexenal, a soybean aldehyde, inhibits Aspergillus flavus growth and aflatoxin production in corn. J Food Sci 76(6):M381–M386Google Scholar
  14. 14.
    Dijkstra FY, Wiken TO (1976) Studies on mushroom flavours. 1. Organoleptic significance of constituents of the cultivated mushroom, Agaricus bisporus. Zeitschrift fur Lebensmittel-Untersuchung und-Forschung 160(3):255-62Google Scholar
  15. 15.
    Fischer G, Dott W (2003) Relevance of airborne fungi and their secondary metabolites for environmental, occupational and indoor hygiene. Arch Microbiol 179:75–82Google Scholar
  16. 16.
    Garcia D, Ramos AJ, Sanchis V, Marín S (2009) Predicting mycotoxins in foods: a review. Food Microbiol 26(8):757–769Google Scholar
  17. 17.
    Grant AJ, Dickens JC (2011) Functional characterization of the octenol receptor neuron on the maxillary palps of the yellow fever mosquito, Aedes aegypti. PLoS One 6(6):e21785Google Scholar
  18. 18.
    Harrison MA (1988) Presence and stability of patulin in apple products: a review. J Food Saf 9(3):147–153Google Scholar
  19. 19.
    Herrero Garcia E, Garzia A, Cordobés S, Espeso EA, Ugalde U (2011) 8-Carbon oxylipins inhibit germination and growth, and stimulate aerial conidiation in Aspergillus nidulans. Fungal Biol 115(4):393–400Google Scholar
  20. 20.
    Houbraken J, Samson RA (2011) Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud Mycol 70:1–51Google Scholar
  21. 21.
    Hung R, Lee S, Bennett JW (2015) Fungal volatile organic compounds and their role in ecosystems. Appl Microbiol Biotechnol 99(8):3395–3405Google Scholar
  22. 22.
    Inamdar AA, Hossain MM, Bernstein AI, Miller GW, Richardson JR, Bennett JW (2013) Fungal-derived semiochemical 1-octen-3-ol disrupts dopamine packaging and causes neurodegeneration. Proc Natl Acad Sci 110(48):19561–19566Google Scholar
  23. 23.
    Inamdar AA, Moore JC, Cohen RI, Bennett JW (2012) A model to evaluate the cytotoxicity of the fungal volatile organic compound 1-octen-3-ol in human embryonic stem cells. Mycopathologia 173(1):13–20Google Scholar
  24. 24.
    Korpi A, Järnberg J, Pasanen A (2009) Microbial volatile organic compounds. Crit Rev Toxicol 39:139–193Google Scholar
  25. 25.
    Luntz AM (2003) Arthropod semiochemicals: mosquitoes, midges and sealice. Biochem Soc Trans 31(1):128–133Google Scholar
  26. 26.
    Marcet Houben M, Ballester AR, de la Fuente B, Harries E, Marcos JF, González Candelas L, Gabaldón T (2012) Genome sequence of the necrotrophic fungus Penicillium digitatum, the main postharvest pathogen of citrus. BMC Genom 13(1):1Google Scholar
  27. 27.
    McMahon C, Guerin PM, Syed Z (2001) 1-octen-3-ol isolated from bont ticks attracts Amblyomma variegatum. J Chem Ecol 27(3):471–486Google Scholar
  28. 28.
    Mendgen K, Deising H (1993) Infection structures of fungal plant pathogens—a cytological and physiological evaluation. New Phytol 124(2):193–213Google Scholar
  29. 29.
    Miyamoto K, Murakami T, Kakumyan P, Keller NP, Matsui K (2014) Formation of 1-octen-3-ol from Aspergillus flavus conidia is accelerated after disruption of cells independently of Ppo oxygenases, and is not a main cause of inhibition of germination. Peer J 2:e395Google Scholar
  30. 30.
    Nemcovic M, Jakubikova L, Viden I, Farkas V (2008) Induction of conidiation by endogenous volatile compounds in Trichoderma spp. FEMS Microbiol Lett 284(2):231–236Google Scholar
  31. 31.
    Neri F, Mari M, Brigati S (2006) Control of Penicillium expansum by plant volatile compounds. Plant Pathol 55(1):100–105Google Scholar
  32. 32.
    Neri F, Mari M, Menniti A, Brigati S (2006) Activity of trans-2-hexenal against Penicillium expansum in ‘Conference’ pears. J Appl Microbiol 100(6):1186–1193Google Scholar
  33. 33.
    Noble R, Dobrovin Pennington A, Hobbs PJ, Pederby J, Rodger A (2009) Volatile C8 compounds and pseudomonads influence primordium formation of Agaricus bisporus. Mycologia 101(5):583–591Google Scholar
  34. 34.
    Okull DO, Beelman RB, Gourama H (2003) Antifungal activity of 10-oxo-trans-8-decenoic acid and 1-octen-3-ol against Penicillium expansum in potato dextrose agar medium. J Food Prot 66(8):1503–1505Google Scholar
  35. 35.
    Pasanen P, Korpi A, Kalliokoski P, Pasanen A (1997) Growth and volatile metabolite production of Aspergillus versicolor in house dust. Environ Int 162:263–272Google Scholar
  36. 36.
    Peng Q, Yuan Y, Gao M, Chen X, Liu B, Liu P, Wu Y, Wu D (2014) Genomic characteristics and comparative genomics analysis of Penicillium chrysogenum KF-25. BMC Genom 15(1):1Google Scholar
  37. 37.
    Pitt JI, Hocking AD, Diane A (2009) Fungi and food spoilage. Springer, BerlinGoogle Scholar
  38. 38.
    Ramoni R, Vincent F, Grolli S, Conti V, Malosse C, Boyer FD, Nagnan Le Meillour P, Spinelli S, Cambillau C, Tegoni M (2001) The insect attractant 1-octen-3-ol is the natural ligand of bovine odorant-binding protein. J Biol Chem 276(10):7150–7155Google Scholar
  39. 39.
    Rosenberger D (1990) Blue mold. Compend Apple Pear Dis 1:54–55Google Scholar
  40. 40.
    Rosenberger DA (1997) Recent research and changing options for controlling postharvest decays of apples. In: Proc. Harvesting, Handling, and Storage Workshop. Northeast Reg. Agric. Eng. Serv. Publ. NRAES-112. Cornell University, Ithaca, NYGoogle Scholar
  41. 41.
    Syed Z, Leal WS (2007) Maxillary palps are broad spectrum odorant detectors in Culex quinquefasciatus. Chem Senses 32:727–738Google Scholar
  42. 42.
    Thakeow P, Angeli S, Weissbecker B, Schutz S (2008) Antennal and behavioral responses of Cis boleti to fungal odor of Trametes gibbosa. Chem Senses 33(4):379–387Google Scholar
  43. 43.
    Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111Google Scholar
  44. 44.
    Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578Google Scholar
  45. 45.
    Tressl R, Bahri D, Engel K (1982) Formation of eight-carbon and ten-carbon components in mushrooms (Agaricus campestris). J Agric Food Chem 30:89–93Google Scholar
  46. 46.
    Van den Berg MA, Albang R, Albermann K, Badger JH, Daran JM, Driessen AJ, Garcia-Estrada C, Fedorova ND, Harris DM, Heijne WH et al (2008) Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotechnol 26(10):1161–1168Google Scholar
  47. 47.
    Viehweg S, Schmitt R, Schmidtlorenz W (1989) Microbial spoilage of refrigerated fresh broilers.VII. Production of off odors from poultry skin by bacterial isolates. Lebensmittel-Wissenschaft und-Technologie 22:356–367Google Scholar
  48. 48.
    WHO (1990) Patulin. WHO Food Addit Ser 26:143–165Google Scholar
  49. 49.
    Wurzenberger M, Grosch W (1984) The formation of 1-octen-3-ol from the 10-hydroperoxide isomer of linoleic acid by a hydroperoxide lyase in mushrooms (Psalliota bispora). Biochimica et Biophysica Acta 794(1):25–30Google Scholar
  50. 50.
    Yang F, Zhang Y, Huang Q, Yin G, Pennerman KK, Yu J, Liu Z, Li D, Guo A (2015) Analysis of key genes of jasmonic acid mediated signal pathway for defense against insect damages by comparative transcriptome sequencing. Sci Rep 5:16500Google Scholar
  51. 51.
    Yin G, Padhi S, Lee S, Hung R, Zhao G, Bennett JW (2015) Effects of three volatile oxylipins on colony development in two species of fungi and on Drosophila larval metamorphosis. Curr Microbiol 71(3):347–356Google Scholar
  52. 52.
    Yung PY, Grasso LL, Mohidin AF, Acerbi E, Hinks J, Seviour T, Marsili E, Lauro FM (2016) Global transcriptomic responses of Escherichia coli K-12 to volatile organic compounds. Sci Rep 6:19899Google Scholar
  53. 53.
    Zawirska Wojtasiak R (2004) Optical purity of (R)-(-)-1-octen-3-ol in the aroma of various species of edible mushrooms. Food Chem 86(1):113–118Google Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2019

Authors and Affiliations

  1. 1.Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
  2. 2.Department of Plant Biology and Pathology, RutgersThe State University of New JerseyNew BrunswickUSA
  3. 3.Department of AgricultureARS, Western Regional Research CenterAlbanyUSA
  4. 4.Department of EnergyOak Ridge Institute for Science and EducationOak RidgeUSA
  5. 5.Department of Agriculture, Food Quality LaboratoryARS, Beltsville Agricultural Research CenterBeltsvilleUSA
  6. 6.Department of Biology, Center for Evolutionary and Theoretical Immunology CETIUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations