Microbial electron uptake in microbial electrosynthesis: a mini-review

  • Rengasamy Karthikeyan
  • Rajesh Singh
  • Arpita BoseEmail author
Bioenergy/Biofuels/Biochemicals - Mini Review


Microbial electron uptake (EU) is the biological capacity of microbes to accept electrons from electroconductive solid materials. EU has been leveraged for sustainable bioproduction strategies via microbial electrosynthesis (MES). MES often involves the reduction of carbon dioxide to multi-carbon molecules, with electrons derived from electrodes in a bioelectrochemical system. EU can be indirect or direct. Indirect EU-based MES uses electron mediators to transfer electrons to microbes. Although an excellent initial strategy, indirect EU requires higher electrical energy. In contrast, the direct supply of cathodic electrons to microbes (direct EU) is more sustainable and energy efficient. Nonetheless, low product formation due to low electron transfer rates during direct EU remains a major challenge. Compared to indirect EU, direct EU is less well-studied perhaps due to the more recent discovery of this microbial capability. This mini-review focuses on the recent advances and challenges of direct EU in relation to MES.


Microbial electrosynthesis Bioelectrochemical system Microbial electron uptake Direct EU Indirect EU 



The authors would like to acknowledge financial support from the U.S. Department of Energy (Grant number DESC0014613), the David and Lucile Packard Foundation (Grant number 201563111), and the U.S. Department of Defense, Army Research Office (Grant number W911NF-18-1-0037). We would also like to thank Marta Wegorzewska, Washington University in St. Louis, USA for feedback on the manuscript.

Author contributions

RK, RS, and AB performed a necessary literature search. RK, RS, and AB wrote the manuscript. AB and RS helped with critical reading and shaping of the manuscript. RK and RS contributed equally to this work. All authors reviewed and contributed to the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.


  1. 1.
    Aiken DC, Curtis TP, Heidrich ES (2019) Avenues to the financial viability of microbial electrolysis cells [MEC] for domestic wastewater treatment and hydrogen production. Int J Hydrogen Energy 44:2426–2434CrossRefGoogle Scholar
  2. 2.
    Beese-Vasbender PF, Grote JP, Garrelfs J, Stratmann M, Mayrhofer KJJ (2015) Selective microbial electrosynthesis of methane by a pure culture of a marine lithoautotrophic archaeon. Bioelectrochemistry 102:50–55CrossRefPubMedGoogle Scholar
  3. 3.
    Bian B, Alqahtani MF, Katuri KP, Liu DF, Bajracharya S, Lai ZP, Rabaey K, Saikaly PE (2018) Porous nickel hollow fiber cathodes coated with CNTs for efficient microbial electrosynthesis of acetate from CO2 using Sporomusa ovata. J Mater Chem A 6:17201–17211CrossRefGoogle Scholar
  4. 4.
    Blanchet E, Duquenne F, Rafrafi Y, Etcheverry L, Erable B, Bergel A (2015) Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction. Energy Environ Sci 8:3731–3744CrossRefGoogle Scholar
  5. 5.
    Bose A, Gardel EJ, Vidoudez C, Parra EA, Girguis PR (2014) Electron uptake by iron-oxidizing phototrophic bacteria. Nat Commun 5:3391–3397CrossRefPubMedGoogle Scholar
  6. 6.
    Call D, Logan BE (2008) Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ Sci Technol 42:3401–3406CrossRefPubMedGoogle Scholar
  7. 7.
    Cheng SA, Xing DF, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43:3953–3958CrossRefPubMedGoogle Scholar
  8. 8.
    Choi O, Kim T, Woo HM, Um Y (2014) Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum. Sci Rep 4:6961–6970CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Christodoulou X, Okoroafor T, Parry S, Velasquez-Orta SB (2017) The use of carbon dioxide in microbial electrosynthesis: Advancements, sustainability and economic feasibility. J CO2 Util 18:390–399CrossRefGoogle Scholar
  10. 10.
    Clauwaert P, Tolêdo R, van der Ha D, Crab R, Verstraete W, Hu H, Udert KM, Rabaey K (2008) Combining biocatalyzed electrolysis with anaerobic digestion. Water Sci Technol 57:575–579CrossRefPubMedGoogle Scholar
  11. 11.
    Deng X, Nakamura R, Hashimoto K, Okamoto A (2015) Electron extraction from an extracellular electrode by Desulfovibrio ferrophilus strain IS5 without using hydrogen as an electron carrier. Electrochemistry 83:529–531CrossRefGoogle Scholar
  12. 12.
    Deutzmann JS, Spormann AM (2017) Enhanced microbial electrosynthesis by using defined co-cultures. ISME J 11:704–714CrossRefPubMedGoogle Scholar
  13. 13.
    Dong Z, Wang H, Tian S, Yang Y, Yuan H, Huang Q, T-s Song, Xie J (2018) Fluidized granular activated carbon electrode for efficient microbial electrosynthesis of acetate from carbon dioxide. Bioresour Technol 269:203–209CrossRefPubMedGoogle Scholar
  14. 14.
    Doud DFR, Angenent LT (2014) Toward electrosynthesis with uncoupled extracellular electron uptake and metabolic growth: enhancing current uptake with Rhodopseudomonas palustris. Environ Sci Technol Lett 1:351–355CrossRefGoogle Scholar
  15. 15.
    Faraghiparapari N, Zengler K (2017) Production of organics from CO2 by microbial electrosynthesis (MES) at high temperature. J Chem Technol Biotechnol 92:375–381CrossRefGoogle Scholar
  16. 16.
    Geelhoed JS, Hamelers HV, Stams AJ (2010) Electricity-mediated biological hydrogen production. Curr Opin Microbiol 13:307–315CrossRefPubMedGoogle Scholar
  17. 17.
    Gong YM, Ebrahim A, Feist AM, Embree M, Zhang T, Lovley D, Zengler K (2013) Sulfide-driven microbial electrosynthesis. Environ Sci Technol 47:568–573CrossRefPubMedGoogle Scholar
  18. 18.
    Ha PT, Lindemann SR, Shi L, Dohnalkova AC, Fredrickson JK, Madigan MT, Beyenal H (2017) Syntrophic anaerobic photosynthesis via direct interspecies electron transfer. Nat Commun 8:13924–13930CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Harrington TD, Tran VN, Mohamed A, Renslow R, Biria S, Orfe L, Call DR, Beyenal H (2015) The mechanism of neutral red-mediated microbial electrosynthesis in Escherichia coli: menaquinone reduction. Bioresour Technol 192:689–695CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hollingsworth N, Taylor SF, Galante MT, Jacquemin J, Longo C, Holt KB, de Leeuw NH, Hardacre C (2015) Reduction of carbon dioxide to formate at low overpotential using a superbase ionic liquid. Angew Chem 54:14164–14168CrossRefGoogle Scholar
  21. 21.
    Jourdin L, Lu Y, Flexer V, Keller J, Freguia S (2016) Biologically induced hydrogen production drives high rate/high efficiency microbial electrosynthesis of acetate from carbon dioxide. ChemElectroChem 3:581–591CrossRefGoogle Scholar
  22. 22.
    Karthikeyan R, Ganesh V, Berchmans S (2012) Bio-electrocatalysis of Acetobacter aceti through direct electron transfer using a template deposited nickel anode. Catal Sci Technol 2:1234–1241CrossRefGoogle Scholar
  23. 23.
    Karthikeyan R, Sathish kumar K, Murugesan M, Berchmans S, Yegnaraman V (2009) Bioelectrocatalysis of Acetobacter aceti and Gluconobacter roseus for current generation. Environ Sci Technol 43:8684–8689CrossRefPubMedGoogle Scholar
  24. 24.
    Karthikeyan R, Wang B, Xuan J, Wong JWC, Lee PKH, Leung MKH (2015) Interfacial electron transfer and bioelectrocatalysis of carbonized plant material as effective anode of microbial fuel cell. Electrochim Acta 157:314–323CrossRefGoogle Scholar
  25. 25.
    Khan MD, Abdulateif H, Ismail IM, Sabir S, Khan MZ (2015) Bioelectricity generation and bioremediation of an azo-dye in a microbial fuel cell coupled activated sludge process. PLoS ONE 10:e0138448–e0138465CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Khunjar WO, Sahin A, West AC, Chandran K, Banta S (2012) Biomass production from electricity using ammonia as an electron carrier in a reverse microbial fuel cell. PLoS ONE 7:e44846–e44853CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kobayashi H, Saito N, Fu Q, Kawaguchi H, Vilcaez J, Wakayama T, Maeda H, Sato K (2013) Bio-electrochemical property and phylogenetic diversity of microbial communities associated with bioelectrodes of an electromethanogenic reactor. J Biosci Bioeng 116:114–117CrossRefPubMedGoogle Scholar
  28. 28.
    LaBelle EV, May HD (2017) Energy efficiency and productivity enhancement of microbial electrosynthesis of acetate. Front Microbiol 8:756–764CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Li H, Opgenorth PH, Wernick DG, Rogers S, Wu TY, Higashide W, Malati P, Huo YX, Cho KM, Liao JC (2012) Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335:1596CrossRefPubMedGoogle Scholar
  30. 30.
    Lohner ST, Deutzmann JS, Logan BE, Leigh J, Spormann AM (2014) Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis. ISME J 8:1673–1681CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Marshall CW, Ross DE, Fichot EB, Norman RS, May HD (2013) Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes. Environ Sci Technol 47:6023–6029CrossRefPubMedGoogle Scholar
  32. 32.
    Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, Snoeyenbos-West OL, Lovley DR (2011) Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol 77:2882–2886CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. Mbio 1:e00103–e00110CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Park DH, Laivenieks M, Guettler MV, Jain MK, Zeikus JG (1999) Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl Environ Microbiol 65:2912–2917PubMedPubMedCentralGoogle Scholar
  35. 35.
    Peguin S, Soucaille P (1996) Modulation of metabolism of Clostridium acetobutylicum grown in chemostat culture in a three-electrode potentiostatic system with methyl viologen as electron carrier. Biotechnol Bioeng 51:342–348CrossRefPubMedGoogle Scholar
  36. 36.
    Pereira-Medrano AG, Knighton M, Fowler GJ, Ler ZY, Pham TK, Ow SY, Free A, Ward B, Wright PC (2013) Quantitative proteomic analysis of the exoelectrogenic bacterium Arcobacter butzleri ED-1 reveals increased abundance of a flagellin protein under anaerobic growth on an insoluble electrode. J Proteomics 78:197–210CrossRefPubMedGoogle Scholar
  37. 37.
    Philips J, Rabaey K, Lovley DR, Vargas M (2017) Biofilm formation by Clostridium ljungdahlii is induced by sodium chloride stress: experimental evaluation and transcriptome analysis. PLoS ONE 12:e0170406–e0170430CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Puig S, Ganigué R, Batlle-Vilanova P, Balaguer MD, Bañeras L, Colprim J (2017) Tracking bio-hydrogen-mediated production of commodity chemicals from carbon dioxide and renewable electricity. Bioresour Technol 228:201–209CrossRefPubMedGoogle Scholar
  39. 39.
    Qian Y, Huang L, Zhou P, Tian F, Puma GL (2019) Reduction of Cu(II) and simultaneous production of acetate from inorganic carbon by Serratia marcescens biofilms and plankton cells in microbial electrosynthesis systems. Sci Total Environ 666:114–125CrossRefPubMedGoogle Scholar
  40. 40.
    Ranaivoarisoa TO, Rengasamy K, Guzman MS, Singh R, Bose A (2017) Towards sustainable bioplastic production in resource limited environments using the photoferroautotrophic and photoelectroautotrophic bacterium Rhodopseudomonas palustris TIE-1. bioRxiv:214551Google Scholar
  41. 41.
    Rengasamy K, Ranaivoarisoa T, Singh R, Bose A (2018) An insoluble iron complex coated cathode enhances direct electron uptake by Rhodopseudomonas palustris TIE-1. Bioelectrochemistry 122:164–173CrossRefPubMedGoogle Scholar
  42. 42.
    Rojas MDA, Zaiat M, Gonzalez ER, De Wever H, Pant D (2018) Effect of the electric supply interruption on a microbial electrosynthesis system converting inorganic carbon into acetate. Bioresour Technol 266:203–210CrossRefGoogle Scholar
  43. 43.
    Rowe AR, Rajeev P, Jain A, Pirbadian S, Okamoto A, Gralnick JA, El-Naggar MY, Nealson KH (2018) Tracking electron uptake from a cathode into Shewanella cells: implications for energy acquisition from solid-substrate electron donors. Mbio 9:e02203–e02217CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Sakakibara Y, Kuroda M (1993) Electric prompting and control of denitrification. Biotechnol Bioeng 42:535–537CrossRefPubMedGoogle Scholar
  45. 45.
    Sato K, Kawaguchi H, Kobayashi H (2013) Bio-electrochemical conversion of carbon dioxide to methane in geological storage reservoirs. Energy Convers Manag 66:343–350CrossRefGoogle Scholar
  46. 46.
    Schlager S, Haberbauer M, Fuchsbauer A, Hemmelmair C, Dumitru LM, Hinterberger G, Neugebauer H, Sariciftci NS (2017) Bio-electrocatalytic application of microorganisms for carbon dioxide reduction to methane. Chemsuschem 10:226–233CrossRefPubMedGoogle Scholar
  47. 47.
    Shrestha PM, Rotaru A-E (2014) Plugging in or going wireless: strategies for interspecies electron transfer. Front microbiol 5:237PubMedPubMedCentralGoogle Scholar
  48. 48.
    Siegert M, Yates MD, Call DF, Zhu X, Spormann A, Logan BE (2014) Comparison of nonprecious metal cathode materials for methane production by electromethanogenesis. ACS Sustain Chem Eng 2:910–917CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Steinbusch KJJ, Hamelers HVM, Schaap JD, Kampman C, Buisman CJN (2010) Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environ Sci Technol 44:513–517CrossRefPubMedGoogle Scholar
  50. 50.
    Thrash JC, Van Trump JI, Weber KA, Miller E, Achenbach LA, Coates JD (2007) Electrochemical stimulation of microbial perchlorate reduction. Environ Sci Technol 41:1740–1746CrossRefPubMedGoogle Scholar
  51. 51.
    Tremblay P-L, Faraghiparapari N, Zhang T (2019) Accelerated H2 evolution during microbial electrosynthesis with Sporomusa ovata. Catalysts 9:166–176CrossRefGoogle Scholar
  52. 52.
    Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M (2010) Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour Technol 101:3085–3090CrossRefPubMedGoogle Scholar
  53. 53.
    Wei H, Wu X-S, Zou L, Wen G-Y, Liu D-Y, Qiao Y (2016) Amine-terminated ionic liquid functionalized carbon nanotubes for enhanced interfacial electron transfer of Shewanella putrefaciens anode in microbial fuel cells. J Power Sources 315:192–198CrossRefGoogle Scholar
  54. 54.
    Xu H, Giwa AS, Wang C, Chang F, Yuan Q, Wang K, Holmes DE (2017) Impact of antibiotics pretreatment on bioelectrochemical CH4 production. ACS Sustain Chem Eng 5:8579–8586CrossRefGoogle Scholar
  55. 55.
    Xu S-w LuY, Li J, Jiang Z-y WuH (2006) Efficient conversion of CO2 to methanol catalyzed by three dehydrogenases co-encapsulated in an alginate-silica (ALG-SiO2) hybrid gel. Ind Eng Chem Res 45:4567–4573CrossRefGoogle Scholar
  56. 56.
    Yamada C, Kato S, Ueno Y, Ishii M, Igarashi Y (2015) Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate. J Biosci Bioeng 119:678–682CrossRefPubMedGoogle Scholar
  57. 57.
    Yu L, Yuan Y, Tang J, Zhou S (2017) Thermophilic moorella thermoautotrophica-immobilized cathode enhanced microbial electrosynthesis of acetate and formate from CO2. Bioelectrochemistry 117:23–28CrossRefPubMedGoogle Scholar
  58. 58.
    Zaybak Z, Pisciotta JM, Tokash JC, Logan BE (2013) Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems. J Biotechnol 168:478–485CrossRefPubMedGoogle Scholar
  59. 59.
    Zhang T, Nie HR, Bain TS, Lu HY, Cui MM, Snoeyenbos-West OL, Franks AE, Nevin KP, Russell TP, Lovley DR (2013) Improved cathode materials for microbial electrosynthesis. Energy Environ Sci 6:217–224CrossRefGoogle Scholar
  60. 60.
    Zhen GY, Kobayashi T, Lu XQ, Xu KQ (2015) Understanding methane bioelectrosynthesis from carbon dioxide in a two-chamber microbial electrolysis cells (MECs) containing a carbon biocathode. Bioresour Technol 186:141–148CrossRefPubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2019

Authors and Affiliations

  1. 1.Department of BiologyWashington University in Saint LouisSt. LouisUSA

Personalised recommendations