Skip to main content
Log in

Development of screening strategies for the identification of paramylon-degrading enzymes

  • Biocatalysis - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Enzymatic degradation of the β-1,3-glucan paramylon could enable the production of bioactive compounds for healthcare and renewable substrates for biofuels. However, few enzymes have been found to degrade paramylon efficiently and their enzymatic mechanisms remain poorly understood. Thus, the aim of this work was to find paramylon-degrading enzymes and ways to facilitate their identification. Towards this end, a Euglena gracilis-derived cDNA expression library was generated and introduced into Escherichia coli. A flow cytometry-based screening assay was developed to identify E. gracilis enzymes that could hydrolyse the fluorogenic substrate fluorescein di-β-d-glucopyranoside in combination with time-saving auto-induction medium. In parallel, four amino acid sequences of potential E. gracilis β-1,3-glucanases were identified from proteomic data. The open reading frame encoding one of these candidate sequences (light_m.20624) was heterologously expressed in E. coli. Finally, a Congo Red dye plate assay was developed for the screening of enzyme preparations potentially able to degrade paramylon. This assay was validated with enzymes assumed to have paramylon-degrading activity and then used to identify four commercial preparations with previously unknown paramylon degradation ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Albalasmeh AA, Berhe AA, Ghezzehei TA (2013) A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohyd Polym 97:253–261

    Article  CAS  Google Scholar 

  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  3. Bamforth CW (1980) The adaptability, purification and properties of exo-beta 1,3-glucanase from the fungus Trichoderma reesei. Biochem J 191:863–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barras DR, Stone BA (1969) β-1,3-glucan hydrolases from Euglena gracilis: I. The nature of the hydrolases. Biochimica et Biophysica Acta (BBA). 191:329–341

    Article  CAS  PubMed  Google Scholar 

  5. Barsanti L, Passarelli V, Evangelista V, Frassanito AM, Gualtieri P (2011) Chemistry, physico-chemistry and applications linked to biological activities of β-glucans. Nat Prod Rep 28:457–466

    Article  CAS  PubMed  Google Scholar 

  6. Barsanti L, Vismara R, Passarelli V, Gualtieri P (2001) Paramylon (β-1,3-glucan) content in wild type and WZSL mutant of Euglena gracilis. Effects of growth conditions. J Appl Phycol 13:59–65

    Article  CAS  Google Scholar 

  7. Bäumer D, Preisfeld A, Ruppel HG (2001) Isolation and characterization of paramylon synthase from Euglena gracilis (Euglenophyceae). J Phycol 37:38–46

    Article  Google Scholar 

  8. Borst P, Sabatini R (2008) Base J: discovery, biosynthesis, and possible functions. Annu Rev Microbiol 62:235–251

    Article  CAS  PubMed  Google Scholar 

  9. Briand J, Calvayrac R, Laval-Martin D, Farineau J (1981) Evolution of carboxylating enzymes involved in paramylon synthesis (phosphoenolpyruvate carboxylase and carboxykinase) in heterotrophically grown Euglena gracilis. Planta 151:168–175

    Article  CAS  PubMed  Google Scholar 

  10. Care A, Petroll K, Gibson ESY, Bergquist PL, Sunna A (2017) Solid-binding peptides for immobilisation of thermostable enzymes to hydrolyse biomass polysaccharides. Biotechnol Biofuels 10:1–16

    Article  CAS  Google Scholar 

  11. Chan GC-F, Chan WK, Sze DM-Y (2009) The effects of β-glucan on human immune and cancer cells. J Hematol Oncol 2:1–11

    Article  CAS  Google Scholar 

  12. Chen C-Y, Zhao X-Q, Yen H-W, Ho S-H, Cheng C-L, Lee D-J, Bai F-W, Chang J-S (2013) Microalgae-based carbohydrates for biofuel production. Biochem Eng J 78:1–10

    Article  CAS  Google Scholar 

  13. Cid VJ, Alvarez AM, Santos AI, Nombela C, Sanchez M (1994) Yeast exo-β-glucanases can be used as efficient and readily detectable reporter genes in Saccharomyces cerevisiae. Yeast 10:747–756

    Article  CAS  PubMed  Google Scholar 

  14. Craig R, Cortens JP, Beavis RC (2004) Open source system for analyzing, validating, and storing protein identification data. J Proteome Res 3:1234–1242

    Article  CAS  PubMed  Google Scholar 

  15. Dimarogona M, Topakas E, Christakopoulos P (2012) Cellulose degradation by oxidative enzymes. Comput Struct Biotechnol J 2:1–8

    Article  Google Scholar 

  16. FAO/WHO (2004) Compendium of food additive specifications. Addendum 8. FHO/WHO, Rome

  17. Forman BM, Samuels HH (1991) pEXPRESS: a family of expression vectors containing a single transcription unit active in prokaryotes, eukaryotes and in vitro. Gene 105:9–15

    Article  CAS  PubMed  Google Scholar 

  18. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gibbs MD, Reeves RA, Hardiman EM, Choudhary PR, Daniel RM, Bergquist PL (2010) The activity of family 11 xylanases at alkaline pH. New Biotechnol 27:795–802

    Article  CAS  Google Scholar 

  20. Giese E, Dekker R, Barbosa A, da Silva M, da Silva R (2011) Production of β-(1, 3)-glucanases by Trichoderma harzianum Rifai: optimization and application to produce gluco-oligosaccharides from paramylon and pustulan. Ferment Technol 1:1–5

    Google Scholar 

  21. Gilkes NR, Henrissat B, Kilburn DG, Miller RC, Warren RA (1991) Domains in microbial beta-1,4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev 55:303–315

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gissibl A, Care A, Parker LM, Iqbal S, Hobba G, Nevalainen H, Sunna A (2018) Microwave pretreatment of paramylon enhances the enzymatic production of soluble β-1,3-glucans with immunostimulatory activity. Carbohyd Polym 196:339–347

    Article  CAS  Google Scholar 

  23. Guan X, Yao H (2008) Optimization of Viscozyme L-assisted extraction of oat bran protein using response surface methodology. Food Chem 106:345–351

    Article  CAS  Google Scholar 

  24. Hardiman E, Gibbs M, Reeves R, Bergquist P (2010) Directed evolution of a thermophilic β-glucosidase for cellulosic bioethanol production. Appl Biochem Biotechnol 161:301–312

    Article  CAS  PubMed  Google Scholar 

  25. Hasan MT, Sun A, Mirzaei M, Te’o J, Hobba G, Sunna A, Nevalainen H (2017) A comprehensive assessment of the biosynthetic pathways of ascorbate, α-tocopherol and free amino acids in Euglena gracilis var. saccharophila. Algal Res 27:140–151

    Article  Google Scholar 

  26. Hashimoto H (2006) Recent structural studies of carbohydrate-binding modules. Cell Mol Life Sci 63:2954–2967

    Article  CAS  PubMed  Google Scholar 

  27. Heimlich KR, Martin AN (1960) A kinetic study of glucose degradation in acid solution. J Am Pharm Assoc 49:592–597

    Article  CAS  Google Scholar 

  28. Houlné G, Schantz R (1988) Characterization of cDNA sequences for LHCI apoproteins in Euglena gracilis: the mRNA encodes a large precursor containing several consecutive divergent polypeptides. Mol Gen Genet 213:479–486

    Article  PubMed  Google Scholar 

  29. Kim DW, Jeong YK, Jang YH, Lee JK (1994) Purification and characterization of endoglucanase and exoglucanase components from Trichoderma viride. J Ferment Bioeng 77:363–369

    Article  CAS  Google Scholar 

  30. Kiss JZ, Vasconcelos AC, Triemer RE (1988) The intramembranous particle profile of the paramylon membrane during paramylon synthesis in Euglena (Euglenophyceae). J Phycol 24:152–157

    CAS  Google Scholar 

  31. Kuhaudomlarp S, Patron NJ, Henrissat B, Rejzek M, Saalbach G, Field RA (2018) Identification of Euglena gracilis β-1,3-glucan phosphorylase and establishment of a new glycoside hydrolase (GH) family GH149. J Biol Chem 293:2865–2876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee RA, Lavoie J-M (2013) From first- to third-generation biofuels: challenges of producing a commodity from a biomass of increasing complexity. Anim Front 3:6–11

    Article  Google Scholar 

  33. Lee SH, Jang GY, Hwang IG, Kim HY, Woo KS, Kim KJ, Lee MJ, Kim TJ, Lee J, Jeong HS (2015) Physicochemical properties of β-glucan from acid hydrolyzed barley. Prev Nutr Food Sci 20:110–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Levine J (2013) Verenium Corporation. In: Jefferies 2013 Global Industrials Conference, New York, 2013

  35. Lim D, Hains P, Walsh B, Bergquist P, Nevalainen H (2001) Proteins associated with the cell envelope of Trichoderma reesei: a proteomic approach. Proteomics 1:899–909

    Article  CAS  PubMed  Google Scholar 

  36. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495

    Article  CAS  PubMed  Google Scholar 

  37. Malkoff DB, Buetow DE (1964) Ultrastructural changes during carbon starvation in Euglena gracilis. Exp Cell Res 35:58–68

    Article  CAS  PubMed  Google Scholar 

  38. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Geer LY, Bryant SH (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45:D200–D203

    Article  CAS  PubMed  Google Scholar 

  39. Messner R, Gruber F, Kubicek CP (1988) Differential regulation of synthesis of multiple forms of specific endoglucanases by Trichoderma reesei QM9414. J Bacteriol 170:3689–3693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mussatto SI, Dragone G, Guimarães PMR, Silva JPA, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28:817–830

    Article  CAS  PubMed  Google Scholar 

  41. Naidu DS, Hlangothi SP, John MJ (2018) Bio-based products from xylan: a review. Carbohyd Polym 179:28–41

    Article  CAS  Google Scholar 

  42. Naika GS, Kaul P, Prakash V (2007) Purification and characterization of a new endoglucanase from Aspergillus aculeatus. J Agric Food Chem 55:7566–7572

    Article  CAS  PubMed  Google Scholar 

  43. Nakashima A, Suzuki K, Asayama Y, Konno M, Saito K, Yamazaki N, Takimoto H (2017) Oral administration of Euglena gracilis Z and its carbohydrate storage substance provides survival protection against influenza virus infection in mice. Biochem Biophys Res Commun 494:379–383

    Article  CAS  PubMed  Google Scholar 

  44. Nobe R, Sakakibara Y, Ogawa K, Suiko M (2004) Cloning and expression of a novel Trichoderma viride laminarinase AI gene (lamAI). Biosci Biotechnol Biochem 68:2111–2119

    Article  CAS  PubMed  Google Scholar 

  45. Novozymes (2009) Product data sheet Celluclast 1.5 L

  46. Novozymes (2015) Product data sheet Viscozyme L

  47. Nowitzki U, Gelius-Dietrich G, Schwieger M, Henze K, Martin W (2004) Chloroplast phosphoglycerate kinase from Euglena gracilis. Eur J Biochem 271:4123–4131

    Article  CAS  PubMed  Google Scholar 

  48. Ntefidou M, Lüdtke T, Ahmad M, Häder D-P (2006) Heterologous expression of photoactivated adenylyl cyclase (PAC) genes from the flagellate Euglena gracilis in insect cells. Photochem Photobiol 82:1601–1605

    Article  CAS  PubMed  Google Scholar 

  49. O’Neill EC, Trick M, Henrissat B, Field RA (2015) Euglena in time: evolution, control of central metabolic processes and multi-domain proteins in carbohydrate and natural product biochemistry. Perspect Sci 6:84–93

    Article  Google Scholar 

  50. O’Neill EC, Trick M, Hill L, Rejzek M, Dusi RG, Hamilton CJ, Zimba PV, Henrissat B, Field RA (2015) The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry. Mol Biosyst 11:2808–2820

    Article  CAS  PubMed  Google Scholar 

  51. Ostafe R, Prodanovic R, Commandeur U, Fischer R (2013) Flow cytometry-based ultra-high-throughput screening assay for cellulase activity. Anal Biochem 435:93–98

    Article  CAS  PubMed  Google Scholar 

  52. Plovins A, Alvarez AM, Ibañez M, Molina M, Nombela C (1994) Use of fluorescein-di-beta-d-galactopyranoside (FDG) and C12-FDG as substrates for beta-galactosidase detection by flow cytometry in animal, bacterial, and yeast cells. Appl Environ Microbiol 60:4638–4641

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Poong SW, Lim PE, Lai JWS, Phang SM (2017) Optimization of high quality total RNA isolation from the microalga, Chlorella sp. (Trebouxiophyceae, Chlorophyta) for next-generation sequencing. Phycol Res 65:146–150

    Article  CAS  Google Scholar 

  54. Pringsheim EG, Pringsheim O (1952) Experimental elimination of chromatophores and eye-spot in Euglena gracilis. New Phytol 51:65–76

    Article  Google Scholar 

  55. Rodríguez-Zavala JS, Ortiz-Cruz MA, Mendoza-Hernández G, Moreno-Sánchez R (2010) Increased synthesis of α-tocopherol, paramylon and tyrosine by Euglena gracilis under conditions of high biomass production. J Appl Microbiol 109:2160–2172

    Article  CAS  PubMed  Google Scholar 

  56. Sharif AL, Smith AG, Abell C (1989) Isolation and characterisation of a cDNA clone for a chlorophyll synthesis enzyme from Euglena gracilis. Eur J Biochem 184:353–359

    Article  CAS  PubMed  Google Scholar 

  57. Sheir-Neiss G, Montenecourt BS (1984) Characterization of the secreted cellulases of Trichoderma reesei wild type and mutants during controlled fermentations. Appl Microbiol Biotechnol 20:46–53

    Article  CAS  Google Scholar 

  58. Studier FW (2014) Stable expression clones and auto-induction for protein production in E. coli. In: Chen YW (ed) Structural genomics: general applications. Humana Press, Totowa, pp 17–32

    Chapter  Google Scholar 

  59. Sun A, Hasan MT, Hobba G, Nevalainen H, Te’o J (2018) Comparative assessment of the Euglena gracilis var. saccharophila variant strain as a producer of the β-1,3-glucan paramylon under varying light conditions. J Phycol 54:529–538

    Article  CAS  PubMed  Google Scholar 

  60. Sunna A, Chi F, Bergquist PL (2013) A linker peptide with high affinity towards silica-containing materials. New Biotechnol 30:485–492

    Article  CAS  Google Scholar 

  61. Sutivisedsak N, Leathers TD, Bischoff KM, Nunnally MS, Peterson SW (2013) Novel sources of β-glucanase for the enzymatic degradation of schizophyllan. Enzyme Microbial Technol 52:203–210

    Article  CAS  Google Scholar 

  62. Suzuki K, Arashida R, Marukawa Y, Yoshida E, Takeda T, Nakano Y, Konno N, Takahashi M (2017) β-1,3-glucanase, polynucleotide, recombinant vector, transformant, production method for β-1,3- glucanase, enzyme preparation, and production method for paramylon having reduced molecular weight. United States Patent and Trademark Office US 9,644,193 B2:1-20

  63. Takeda T, Nakano Y, Takahashi M, Konno N, Sakamoto Y, Arashida R, Marukawa Y, Yoshida E, Ishikawa T, Suzuki K (2015) Identification and enzymatic characterization of an endo-1,3-β-glucanase from Euglena gracilis. Phytochemistry 116:21–27

    Article  CAS  PubMed  Google Scholar 

  64. Tanaka Y, Ogawa T, Maruta T, Yoshida Y, Arakawa K, Ishikawa T (2017) Glucan synthase-like 2 is indispensable for paramylon synthesis in Euglena gracilis. FEBS Lett 591:1360–1370

    Article  CAS  PubMed  Google Scholar 

  65. Teather RM, Wood PJ (1982) Use of Congo Red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777–780

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Tian L, Liu S, Wang S, Wang L (2016) Ligand-binding specificity and promiscuity of the main lignocellulolytic enzyme families as revealed by active-site architecture analysis. Sci Rep 6:1–11

    Article  CAS  Google Scholar 

  67. Várnai A, Mäkelä MR, Djajadi DT, Rahikainen J, Hatakka A, Viikari L (2014) Carbohydrate-binding modules of fungal cellulases: occurrence in nature, function, and relevance in industrial biomass conversion. In: Sariaslani S, Gadd GM (eds) Advances in applied microbiology. Academic Press, Cambridge, pp 103–165

    Google Scholar 

  68. Verenium (2007) Product data sheet Pyrolase 160

  69. Verenium (2012) Product summary Pyrolase cellulose

  70. Vogel K, Barber AA (1968) Degradation of paramylon by Euglena gracilis. J Protozool 15:657–662

    Article  CAS  PubMed  Google Scholar 

  71. Watanabe T, Kasahara N, Aida K, Tanaka H (1992) Three N-terminal domains of β-1,3-glucanase A1 are involved in binding to insoluble beta-1,3-glucan. J Bacteriol 174:186–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wood PJ, Fulcher RG (1978) Interaction of some dyes with cereal β-glucans. Cereal Chem 55:952–966

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council Industrial Transformation Training Centre funding scheme (Project number: IC130100009). AG was supported by an international Macquarie University Research Excellence Scholarship. AC is supported by a Cancer Institute New South Wales Early Career Fellowship (Project number: ECF171114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwar Sunna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 639 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gissibl, A., Care, A., Sun, A. et al. Development of screening strategies for the identification of paramylon-degrading enzymes. J Ind Microbiol Biotechnol 46, 769–781 (2019). https://doi.org/10.1007/s10295-019-02157-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-019-02157-7

Keywords

Navigation