Skip to main content
Log in

Characterization and comparative analysis of toxin–antitoxin systems in Acetobacter pasteurianus

  • Genetics and Molecular Biology of Industrial Organisms - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Bacterial toxin–antitoxin (TA) systems play important roles in diverse cellular regulatory processes. Here, we characterize three putative type II TA candidates from Acetobacter pasteurianus and investigate the profile of type II TA systems in the genus Acetobacter. Based on the gene structure and activity detection, two-pairs loci were identified as the canonical hicAB and higAB TA systems, respectively, and DB34_01190DB34_01195 as a putative new one without a canonical TA architecture. Physiologically, the expression of the three pairs conferred E. coli with additional plasmid maintenance and survival when under acetic acid stress. Chromosomal TA systems can be horizontally transferred within an ecological vinegar microbiota by co-option, and there was a tendency for toxin module loss. The antitoxin retention in the genome is suggested to have a broad role in bacterial physiology. Furthermore, A. pasteurianus strains, universally domesticated and used for industrial vinegar fermentation, showed a higher number of type II TA loci compared to the host-associated ones. The amount of TA loci per genome showed little positive relationship to insertion sequences, although its prevalence was species-associated, to the extent of even being strain-associated. The TA system is a candidate of studying the resistant mechanistic network, the TAs-dependent translatome affords a real-time profile to explore stress adaptation of A. pasteurianus, promoting industrial development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aas PA, Otterlei M, Falnes PO, Vagbo CB, Skorpen F, Akbari M, Sundheim O, Bjoras M, Slupphaug G, Seeberg E, Krokan HE (2003) Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature 421:859–863. https://doi.org/10.1038/nature01363

    Article  CAS  PubMed  Google Scholar 

  2. Anantharaman V, Makarova KS, Burroughs AM, Koonin EV, Aravind L (2013) Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing. Biol Direct 8:15. https://doi.org/10.1186/1745-6150-8-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Andres-Barrao C, Falquet L, Calderon-Copete SP, Descombes P, Ortega Perez R, Barja F (2011) Genome sequences of the high-acetic acid-resistant bacteria Gluconacetobacter europaeus LMG 18890T and G. europaeus LMG 18494 (reference strains), G. europaeus 5P3, and Gluconacetobacter oboediens 174Bp2 (isolated from vinegar). J Bacteriol 193:2670–2671. https://doi.org/10.1128/JB.00229-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Andres-Barrao C, Saad MM, Cabello Ferrete E, Bravo D, Chappuis ML, Ortega Perez R, Junier P, Perret X, Barja F (2016) Metaproteomics and ultrastructure characterization of Komagataeibacter spp. involved in high-acid spirit vinegar production. Food Microbiol 55:112–122. https://doi.org/10.1016/j.fm.2015.10.012

    Article  CAS  PubMed  Google Scholar 

  5. Andrés-Barrao C, Saad MM, Chappuis M-L, Boffa M, Perret X, Ortega Pérez R, Barja F (2012) Proteome analysis of Acetobacter pasteurianus during acetic acid fermentation. J Proteom 75:1701–1717. https://doi.org/10.1016/j.jprot.2011.11.027

    Article  CAS  Google Scholar 

  6. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201. https://doi.org/10.1093/bioinformatics/bti770

    Article  CAS  PubMed  Google Scholar 

  7. Azuma Y, Hosoyama A, Matsutani M, Furuya N, Horikawa H, Harada T, Hirakawa H, Kuhara S, Matsushita K, Fujita N, Shirai M (2009) Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucl Acids Res 37:5768–5783. https://doi.org/10.1093/nar/gkp612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bordes P, Sala AJ, Ayala S, Texier P, Slama N, Cirinesi AM, Guillet V, Mourey L, Genevaux P (2016) Chaperone addiction of toxin-antitoxin systems. Nat Commun 7:13339. https://doi.org/10.1038/ncomms13339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cho J, Carr AN, Whitworth L, Johnson B, Wilson KS (2017) MazEF toxin-antitoxin proteins alter Escherichia coli cell morphology and infrastructure during persister formation and regrowth. Microbiology 163:308–321. https://doi.org/10.1099/mic.0.000436

    Article  CAS  PubMed  Google Scholar 

  10. Chouaia B, Gaiarsa S, Crotti E, Comandatore F, Degli Esposti M, Ricci I, Alma A, Favia G, Bandi C, Daffonchio D (2014) Acetic acid bacteria genomes reveal functional traits for adaptation to life in insect guts. Genome Biol Evol 6:912–920. https://doi.org/10.1093/gbe/evu062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Crotti E, Rizzi A, Chouaia B, Ricci I, Favia G, Alma A, Sacchi L, Bourtzis K, Mandrioli M, Cherif A, Bandi C, Daffonchio D (2010) Acetic acid bacteria, newly emerging symbionts of insects. Appl Environ Microbiol 76:6963–6970. https://doi.org/10.1128/AEM.01336-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Daimon Y, Narita S, Akiyama Y (2015) Activation of toxin-antitoxin system toxins suppresses lethality caused by the loss of sigmaE in Escherichia coli. J Bacteriol 197:2316–2324. https://doi.org/10.1128/JB.00079-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fiedoruk K, Daniluk T, Swiecicka I, Sciepuk M, Leszczynska K (2015) Type II toxin-antitoxin systems are unevenly distributed among Escherichia coli phylogroups. Microbiology 161:158–167. https://doi.org/10.1099/mic.0.082883-0

    Article  CAS  PubMed  Google Scholar 

  14. Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11:681–684

    CAS  PubMed  Google Scholar 

  15. Goeders N, Van Melderen L (2014) Toxin-antitoxin systems as multilevel interaction systems. Toxins (Basel) 6:304–324. https://doi.org/10.3390/toxins6010304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goo E, An JH, Kang Y, Hwang I (2015) Control of bacterial metabolism by quorum sensing. Trends Microbiol 23:567–576. https://doi.org/10.1016/j.tim.2015.05.007

    Article  CAS  PubMed  Google Scholar 

  17. Greenberg DE, Porcella SF, Stock F, Wong A, Conville PS, Murray PR, Holland SM, Zelazny AM (2006) Granulibacter bethesdensis gen. nov., sp. nov., a distinctive pathogenic acetic acid bacterium in the family Acetobacteraceae. Int J Syst Evol Microbiol 56:2609–2616. https://doi.org/10.1099/ijs.0.64412-0

    Article  CAS  PubMed  Google Scholar 

  18. Guo Y, Yao J, Sun C, Wen Z, Wang X (2016) Characterization of the deep-sea Streptomyces sp. SCSIO 02999 derived VapC/VapB toxin-antitoxin system in Escherichia coli. Toxins (Basel) 8:195. https://doi.org/10.3390/toxins8070195

    Article  CAS  PubMed Central  Google Scholar 

  19. Harms A, Stanger FV, Dehio C (2016) Biological diversity and molecular plasticity of FIC domain proteins. Annu Rev Microbiol 70:341–360. https://doi.org/10.1146/annurev-micro-102215-095245

    Article  CAS  PubMed  Google Scholar 

  20. Haruta S, Ueno S, Egawa I, Hashiguchi K, Fujii A, Nagano M, Ishii M, Igarashi Y (2006) Succession of bacterial and fungal communities during a traditional pot fermentation of rice vinegar assessed by PCR-mediated denaturing gradient gel electrophoresis. Int J Food Microbiol 109:79–87. https://doi.org/10.1016/j.ijfoodmicro.2006.01.015

    Article  CAS  PubMed  Google Scholar 

  21. Hayes F, Bustamante P, Tello M, Orellana O (2014) Toxin-antitoxin systems in the mobile genome of Acidithiobacillus ferrooxidans. PLoS One 9:e112226. https://doi.org/10.1371/journal.pone.0112226

    Article  CAS  Google Scholar 

  22. Hu Y, Benedik MJ, Wood TK (2012) Antitoxin DinJ influences the general stress response through transcript stabilizer CspE. Environ Microbiol 14:669–679. https://doi.org/10.1111/j.1462-2920.2011.02618.x

    Article  CAS  PubMed  Google Scholar 

  23. Iida A, Ohnishi Y, Horinouchi S (2008) Control of acetic acid fermentation by quorum sensing via N-acylhomoserine lactones in Gluconacetobacter intermedius. J Bacteriol 190:2546–2555. https://doi.org/10.1128/JB.01698-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jornvall H, Persson B, Krook M, Atrian S, Gonzalez-Duarte R, Jeffery J, Ghosh D (1995) Short-chain dehydrogenases/reductases (SDR). Biochemistry-Us 34:6003–6013

    Article  CAS  Google Scholar 

  25. Kedzierska B, Hayes F (2016) Emerging roles of toxin-antitoxin modules in bacterial pathogenesis. Molecules 21:790. https://doi.org/10.3390/molecules21060790

    Article  CAS  PubMed Central  Google Scholar 

  26. Kim EK, Kim SH, Nam HJ, Choi MK, Lee KA, Choi SH, Seo YY, You H, Kim B, Lee WJ (2012) Draft genome sequence of Gluconobacter morbifer G707T, a pathogenic gut bacterium isolated from Drosophila melanogaster intestine. J Bacteriol 194:1245. https://doi.org/10.1128/JB.06670-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Koonin EV, Makarova KS (2013) CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes. RNA Biol 10:679–686. https://doi.org/10.4161/rna.24022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645. https://doi.org/10.1101/gr.092759.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kwan BW, Lord DM, Peti W, Page R, Benedik MJ, Wood TK (2015) The MqsR/MqsA toxin/antitoxin system protects Escherichia coli during bile acid stress. Environ Microbiol 17:3168–3181. https://doi.org/10.1111/1462-2920.12749

    Article  CAS  PubMed  Google Scholar 

  30. Leplae R, Geeraerts D, Hallez R, Guglielmini J, Dreze P, Van Melderen L (2011) Diversity of bacterial type II toxin-antitoxin systems: a comprehensive search and functional analysis of novel families. Nucl Acids Res 39:5513–5525. https://doi.org/10.1093/nar/gkr131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li G, Shen M, Lu S, Le S, Tan Y, Wang J, Zhao X, Shen W, Guo K, Yang Y, Zhu H, Rao X, Hu F, Li M (2016) Identification and characterization of the HicAB toxin-antitoxin system in the opportunistic pathogen Pseudomonas aeruginosa. Toxins (Basel) 8:113. https://doi.org/10.3390/toxins8040113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Makarova KS, Grishin NV, Koonin EV (2006) The HicAB cassette, a putative novel, RNA-targeting toxin-antitoxin system in archaea and bacteria. Bioinformatics 22:2581–2584. https://doi.org/10.1093/bioinformatics/btl418

    Article  CAS  PubMed  Google Scholar 

  33. Mamlouk D, Hidalgo C, Torija MJ, Gullo M (2011) Evaluation and optimisation of bacterial genomic DNA extraction for no-culture techniques applied to vinegars. Food Microbiol 28:1374–1379. https://doi.org/10.1016/j.fm.2011.06.009

    Article  CAS  PubMed  Google Scholar 

  34. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH (2015) CDD: NCBI’s conserved domain database. Nucl Acids Res 43:D222–D226. https://doi.org/10.1093/nar/gku1221

    Article  CAS  PubMed  Google Scholar 

  35. Marimon O, Teixeira JM, Cordeiro TN, Soo VW, Wood TL, Mayzel M, Amata I, Garcia J, Morera A, Gay M, Vilaseca M, Orekhov VY, Wood TK, Pons M (2016) An oxygen-sensitive toxin-antitoxin system. Nat Commun 7:13634. https://doi.org/10.1038/ncomms13634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martins PM, Machado MA, Silva NV, Takita MA, de Souza AA (2016) Type II toxin-antitoxin distribution and adaptive aspects on Xanthomonas Genomes: focus on Xanthomonas citri. Front Microbiol 7:652. https://doi.org/10.3389/fmicb.2016.00652

    Article  PubMed  PubMed Central  Google Scholar 

  37. McVicker G, Tang CM (2016) Deletion of toxin-antitoxin systems in the evolution of Shigella sonnei as a host-adapted pathogen. Nat Microbiol 2:16204. https://doi.org/10.1038/nmicrobiol.2016.204

    Article  CAS  PubMed  Google Scholar 

  38. Mine N, Guglielmini J, Wilbaux M, Van Melderen L (2009) The decay of the chromosomally encoded ccdO157 toxin-antitoxin system in the Escherichia coli species. Genetics 181:1557–1566. https://doi.org/10.1534/genetics.108.095190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nie Z, Zheng Y, Du H, Xie S, Wang M (2015) Dynamics and diversity of microbial community succession in traditional fermentation of Shanxi aged vinegar. Food Microbiol 47:62–68. https://doi.org/10.1016/j.fm.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  40. Oberto J (2013) SyntTax: a web server linking synteny to prokaryotic taxonomy. BMC Bioinform 14:4. https://doi.org/10.1186/1471-2105-14-4

    Article  Google Scholar 

  41. Ogura T, Hiraga S (1983) Mini-F plasmid genes that couple host cell division to plasmid proliferation. Proc Natl Acad Sci USA 80:4784–4788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol 23:195–200. https://doi.org/10.1038/nbt1062

    Article  CAS  PubMed  Google Scholar 

  43. Ramage HR, Connolly LE, Cox JS (2009) Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet 5:e1000767. https://doi.org/10.1371/journal.pgen.1000767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ramisetty BC, Santhosh RS (2016) Horizontal gene transfer of chromosomal type II toxin-antitoxin systems of Escherichia coli. FEMS Microbiol Lett 363:fnv238. https://doi.org/10.1093/femsle/fnv238

    Article  CAS  PubMed  Google Scholar 

  45. Rankin DJ, Turner LA, Heinemann JA, Brown SP (2012) The coevolution of toxin and antitoxin genes drives the dynamics of bacterial addiction complexes and intragenomic conflict. Proc Biol Sci 279:3706–3715. https://doi.org/10.1098/rspb.2012.0942

    Article  PubMed  PubMed Central  Google Scholar 

  46. Reeve WG, Tiwari RP, Kale NB, Dilworth MJ, Glenn AR (2002) ActP controls copper homeostasis in Rhizobium leguminosarum bv. viciae and Sinorhizobium meliloti preventing low pH-induced copper toxicity. Mol Microbiol 43:981–991

    Article  CAS  PubMed  Google Scholar 

  47. Schumacher MA, Balani P, Min J, Chinnam NB, Hansen S, Vulic M, Lewis K, Brennan RG (2015) HipBA-promoter structures reveal the basis of heritable multidrug tolerance. Nature 524:59–64. https://doi.org/10.1038/nature14662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shao Y, Harrison EM, Bi D, Tai C, He X, Ou HY, Rajakumar K, Deng Z (2011) TADB: a web-based resource for Type 2 toxin-antitoxin loci in bacteria and archaea. Nucl Acids Res 39:D606–D611. https://doi.org/10.1093/nar/gkq908

    Article  CAS  PubMed  Google Scholar 

  49. Shen Z, Patil RD, Sahin O, Wu Z, Pu XY, Dai L, Plummer PJ, Yaeger MJ, Zhang Q (2016) Identification and functional analysis of two toxin-antitoxin systems in Campylobacter jejuni. Mol Microbiol 101:909–923. https://doi.org/10.1111/mmi.13431

    Article  CAS  PubMed  Google Scholar 

  50. Soo VW, Wood TK (2013) Antitoxin MqsA represses curli formation through the master biofilm regulator CsgD. Sci Rep 3:3186. https://doi.org/10.1038/srep03186

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tiwari P, Arora G, Singh M, Kidwai S, Narayan OP, Singh R (2015) MazF ribonucleases promote Mycobacterium tuberculosis drug tolerance and virulence in guinea pigs. Nat Commun 6:6059. https://doi.org/10.1038/ncomms7059

    Article  CAS  PubMed  Google Scholar 

  52. Trcek J (2015) Plasmid analysis of high acetic acid-resistant bacterial strains by two-dimensional agarose gel electrophoresis and insights into the phenotype of plasmid pJK2-1. Ann Microbiol 65:1287–1292. https://doi.org/10.1007/s13213-014-0966-0

    Article  CAS  Google Scholar 

  53. Trcek J, Barja F (2015) Updates on quick identification of acetic acid bacteria with a focus on the 16S-23S rRNA gene internal transcribed spacer and the analysis of cell proteins by MALDI-TOF mass spectrometry. Int J Food Microbiol 196:137–144. https://doi.org/10.1016/j.ijfoodmicro.2014.12.003

    Article  CAS  PubMed  Google Scholar 

  54. Truttmann MC, Ploegh HL (2017) rAMPing up stress signaling: protein AMPylation in metazoans. Trends Cell Biol 27:608–620. https://doi.org/10.1016/j.tcb.2017.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Walling LR, Butler JS (2018) Homologous VapC toxins inhibit translation and cell growth by sequence-specific cleavage of tRNA(fMet). J Bacteriol. https://doi.org/10.1128/jb.00582-17

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wang B, Shao Y, Chen T, Chen W, Chen F (2015) Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics. Sci Rep 5:18330. https://doi.org/10.1038/srep18330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang X, Kim Y, Hong SH, Ma Q, Brown BL, Pu M, Tarone AM, Benedik MJ, Peti W, Page R, Wood TK (2011) Antitoxin MqsA helps mediate the bacterial general stress response. Nat Chem Biol 7:359–366. https://doi.org/10.1038/nchembio.560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang Z, Zang N, Shi J, Feng W, Liu Y, Liang X (2015) Comparative proteome of Acetobacter pasteurianus Ab3 during the high acidity rice vinegar fermentation. Appl Biochem Biotechnol 177:1573–1588. https://doi.org/10.1007/s12010-015-1838-1

    Article  CAS  PubMed  Google Scholar 

  59. Wei YX, Ye L, Liu DB, Zhang ZY, Liu C, Guo XK (2015) Activation of the chromosomally encoded mazEF(Bif) locus of Bifidobacterium longum under acid stress. Int J Food Microbiol 207:16–22. https://doi.org/10.1016/j.ijfoodmicro.2015.04.028

    Article  CAS  PubMed  Google Scholar 

  60. Wemmenhove E, van Valenberg HJ, Zwietering MH, van Hooijdonk TC, Wells-Bennik MH (2016) Minimal inhibitory concentrations of undissociated lactic, acetic, citric and propionic acid for Listeria monocytogenes under conditions relevant to cheese. Food Microbiol 58:63–67. https://doi.org/10.1016/j.fm.2016.03.012

    Article  CAS  PubMed  Google Scholar 

  61. Wood TL, Wood TK (2016) The HigB/HigA toxin/antitoxin system of Pseudomonas aeruginosa influences the virulence factors pyochelin, pyocyanin, and biofilm formation. Microbiologyopen 5:499–511. https://doi.org/10.1002/mbo3.346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wozniak RA, Waldor MK (2009) A toxin-antitoxin system promotes the maintenance of an integrative conjugative element. PLoS Genet 5:e1000439. https://doi.org/10.1371/journal.pgen.1000439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wu C-F, Lin J-S, Shaw G-C, Lai E-M (2012) Acid-induced type VI secretion system is regulated by ExoR-ChvG/ChvI signaling cascade in Agrobacterium tumefaciens. PLoS Pathog 8:e1002938. https://doi.org/10.1371/journal.ppat.1002938

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wu LH, Lu ZM, Zhang XJ, Wang ZM, Yu YJ, Shi JS, Xu ZH (2017) Metagenomics reveals flavour metabolic network of cereal vinegar microbiota. Food Microbiol 62:23–31. https://doi.org/10.1016/j.fm.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  65. Xia K, Li Y, Sun J, Liang X (2016) Comparative genomics of Acetobacter pasteurianus Ab3, an acetic acid producing strain isolated from chinese traditional rice vinegar meiguichu. PLoS One 11:e0162172. https://doi.org/10.1371/journal.pone.0162172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xia K, Liang X, Li Y (2015) Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria. Yi Chuan 37:1242–1250. https://doi.org/10.16288/j.yczz.15-244

    Article  CAS  PubMed  Google Scholar 

  67. Xia K, Zang N, Zhang J, Zhang H, Li Y, Liu Y, Feng W, Liang X (2016) New insights into the mechanisms of acetic acid resistance in Acetobacter pasteurianus using iTRAQ-dependent quantitative proteomic analysis. Int J Food Microbiol 238:241–251. https://doi.org/10.1016/j.ijfoodmicro.2016.09.016

    Article  CAS  PubMed  Google Scholar 

  68. Xu W, Huang Z, Zhang X, Li Q, Lu Z, Shi J, Xu Z, Ma Y (2011) Monitoring the microbial community during solid-state acetic acid fermentation of Zhenjiang aromatic vinegar. Food Microbiol 28:1175–1181. https://doi.org/10.1016/j.fm.2011.03.011

    Article  CAS  PubMed  Google Scholar 

  69. Yao J, Guo Y, Zeng Z, Liu X, Shi F, Wang X (2015) Identification and characterization of a HEPN-MNT family type II toxin-antitoxin in Shewanella oneidensis. Microb Biotechnol 8:961–973. https://doi.org/10.1111/1751-7915.12294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yetiman AE, Kesmen Z (2015) Identification of acetic acid bacteria in traditionally produced vinegar and mother of vinegar by using different molecular techniques. Int J Food Microbiol 204:9–16. https://doi.org/10.1016/j.ijfoodmicro.2015.03.013

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was financially supported by grants from the National Natural Science Foundation of China (31171745) and the Natural Science Foundation of Zhejiang Province (LY19C200002) to X. Liang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinle Liang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This paper does not contain any studies with human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 392 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, K., Bao, H., Zhang, F. et al. Characterization and comparative analysis of toxin–antitoxin systems in Acetobacter pasteurianus. J Ind Microbiol Biotechnol 46, 869–882 (2019). https://doi.org/10.1007/s10295-019-02144-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-019-02144-y

Keywords

Navigation