Skip to main content
Log in

Discovery, properties, and biosynthesis of pseudouridimycin, an antibacterial nucleoside-analog inhibitor of bacterial RNA polymerase

  • Natural Products - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Pseudouridimycin (PUM) is a novel pseudouridine-containing peptidyl-nucleoside antibiotic that inhibits bacterial RNA polymerase (RNAP) through a binding site and mechanism different from those of clinically approved RNAP inhibitors of the rifamycin and lipiarmycin (fidaxomicin) classes. PUM was discovered by screening microbial fermentation extracts for RNAP inhibitors. In this review, we describe the discovery and characterization of PUM. We also describe the RNAP-inhibitory and antibacterial properties of PUM. Finally, we review available information on the gene cluster and pathway for PUM biosynthesis and on the potential for discovering additional novel pseudouridine-containing nucleoside antibiotics by searching bacterial genome and metagenome sequences for sequences similar to pumJ, the pseudouridine-synthase gene of the PUM biosynthesis gene cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Figure adapted from Ref. [26])

Fig. 3

(Figure from Ref. [26])

Fig. 4

(Figure adapted from Ref. [37])

Fig. 5

Similar content being viewed by others

References

  1. Amirkia V, Heinrich M (2015) Natural products and drug discovery: a survey of stakeholders in industry and academia. Front Pharmacol 6:237

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bae B, Nayak D, Ray A, Mustaev A, Landick R, Darst S (2015) CBR antimicrobials inhibit RNA polymerase via at least two bridge-helix cap-mediated effects on nucleotide addition. Proc Natl Acad Sci USA 112:E4178–E4187

    Article  CAS  PubMed  Google Scholar 

  3. Belogurov G et al (2009) Transcription inactivation through local refolding of the RNA polymerase structure. Nature 45:332–335

    Article  CAS  Google Scholar 

  4. Brown E, Wright G (2016) Antibacterial drug discovery in the resistance era. Nature 529:336–343

    Article  CAS  PubMed  Google Scholar 

  5. Butler MS, Blaskovich MA, Cooper MA (2017) Antibiotics in the clinical pipeline at the end of 2015. J Antibiot 70:3–24

    Article  CAS  PubMed  Google Scholar 

  6. Campbell E, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, Darst S (2001) Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104:901–912

    Article  CAS  PubMed  Google Scholar 

  7. David B, Wolfender J-L, Dias DA (2015) The pharmaceutical industry and natural products: historical status and new trends. Phytochem Rev 14:299–315

    Article  CAS  Google Scholar 

  8. Degen D et al (2014) Transcription inhibition by the depsipeptide antibiotic salinamide A. eLife 3:e02451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ebright RH (2017) Novel RNA polymerase inhibitor found in soil extracts provides hope for future antibacterial drugs. Future Med Chem 9:1857–1861

    Article  CAS  PubMed  Google Scholar 

  10. Ericsson UB, Andersson ME, Engvall B, Nordlund P, Hallberg BM (2004) Expression, purification, crystallization and preliminary diffraction studies of the tRNA pseudouridine synthase TruD from Escherichia coli. Acta Crystallogr D Biol Crystallogr 60:775–776

    Article  CAS  PubMed  Google Scholar 

  11. Feng Y et al (2015) Structural basis of transcription inhibition by CBR hydroxamidines and CBR pyrazoles. Structure 23:1470–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fernandes P (2015) The global challenge of new classes of antibacterial agents: an industry perspective. Curr Opin Pharmacol 24:7–11

    Article  CAS  PubMed  Google Scholar 

  13. Garibyan L et al (2003) Use of the rpoB gene to determine the specificity of base substitution mutations on the Escherichia coli chromosome. DNA Repair 2:593–608

    Article  CAS  PubMed  Google Scholar 

  14. Genilloud O (2017) Actinomycetes: still a source of novel antibiotics. Nat Prod Rep 34:1203–1232

    Article  CAS  PubMed  Google Scholar 

  15. Hamma T, Ferré-D’Amaré AR (2006) Pseudouridine synthases. Chem Biol 13:1125–1135

    Article  CAS  Google Scholar 

  16. Ho MX, Hudson BP, Das K, Arnold E, Ebright RH (2009) Structures of RNA polymerase–antibiotic complexes. Curr Opin Struct Biol 19:715–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Holowachuk SA, Bal’a MF, Buddington RK (2003) A kinetic microplate method for quantifying the antibacterial properties of biological fluids. J Microbiol Methods 55:441–446

    Article  CAS  PubMed  Google Scholar 

  18. Iorio M et al (2014) A glycosylated, labionin-containing lanthipeptide with marked antinociceptive activity. ACS Chem Biol 9:398–404

    Article  CAS  PubMed  Google Scholar 

  19. Jin DJ, Gross C (1988) Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J Mol Biol 202:45–58

    Article  CAS  PubMed  Google Scholar 

  20. Jovanovic M, Burrows P, Bose D, Cámara B, Wiesler S, Weinzierl R, Zhang X, Wigneshweraraj S, Buck M (2011) An activity map of the Escherichia coli RNA polymerase bridge helix. J Biol Chem 286:14469–14479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li Y, Zhong Z, Zhang W, Qian P-Y (2018) Discovery of cationic nonribosomal peptides as Gram-negative antibiotics through global genome mining. Nat Comm 9:3273

    Article  CAS  Google Scholar 

  22. Lin W et al (2017) Structural basis of Mycobacterium tuberculosis transcription and transcription inhibition. Mol Cell 66:169–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin W et al (2018) Structural basis of transcription inhibition by fidaxomicin (lipiarmycin A3). Mol Cell 70:60–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma C, Yang X, Lewis PJ (2016) Bacterial transcription as a target for antibacterial drug development. Microbiol Mol Biol Rev 80:139–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maffioli SI, Cruz JC, Monciardini P, Sosio M, Donadio S (2016) Advancing cell wall inhibitors towards clinical applications. J Ind Microbiol Biotechnol 43:177–184

    Article  CAS  PubMed  Google Scholar 

  26. Maffioli SI et al (2017) Antibacterial nucleoside-analog inhibitor of bacterial RNA polymerase. Cell 169:1240–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maio A, Brandi L, Donadio S, Gualerzi CO (2016) The oligopeptide permease Opp mediates illicit transport of the bacterial P-site decoding inhibitor GE81112. Antibiotics 5:E17

    Article  CAS  PubMed  Google Scholar 

  28. Monciardini P, Iorio M, Maffioli S, Sosio M, Donadio S (2014) Discovering new bioactive compounds from microbial sources. Microb Biotechnol 7:209–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mukhopadhyay J et al (2008) The RNA polymerase “switch region” is a target for inhibitors. Cell 135:295–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. National Committee for Clinical Laboratory Standards (2010) Performance standards for Antimicrobial Susceptibility Testing; Twentieth Informational Supplement—CLSI document M100-S20 (2010) NCCLS. Wayne, Pennsylvania

    Google Scholar 

  31. Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661

    Article  CAS  PubMed  Google Scholar 

  32. Niu G, Tan H (2015) Nucleoside antibiotics: biosynthesis, regulation, and biotechnology. Trends Microbiol 23:110–119

    Article  CAS  PubMed  Google Scholar 

  33. Pesic A, Steinhaus B, Kemper S, Nachtigall J, Kutzner HJ, Höfle G, Süssmuth RD (2014) Isolation and structure elucidation of the nucleoside antibiotic strepturidin from Streptomyces albus DSM 40763. J Antibiot 67:471–477

    Article  CAS  PubMed  Google Scholar 

  34. Pye CR, Bertin MJ, Lokey RS, Gerwick WH, Linington RG (2017) Retrospective analysis of natural products provides insights for future discovery trends. Proc Natl Acad Sci USA 114:5601–5606

    Article  CAS  PubMed  Google Scholar 

  35. Sagitov V, Nikiforov V, Goldfarb A (1993) Dominant lethal mutations near the 5′ substrate binding site affect RNA polymerase propagation. J Biol Chem 268:2195–2202

    CAS  PubMed  Google Scholar 

  36. Silver LL (2016) Natural products as a source of drug leads to overcome drug resistance. Future Microbiol 10:1711–1718

    Article  CAS  Google Scholar 

  37. Sosio M, Gaspari E, Iorio M, Pessina S, Medema MH, Bernasconi A, Simone M, Maffioli SI, Ebright RH, Donadio S (2018) Analysis of the pseudouridimycin biosynthetic pathway provides insights into the formation of C-nucleoside antibiotics. Cell Chem Biol 25:540–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sosunov V, Zorov S, Sosunova E, Nikolaev A, Zakeyeva I, Bass I, Goldfarb A, Nikiforov V, Severinov K, Mustaev A (2005) The involvement of the aspartate triad of the active center in all catalytic activities of multisubunit RNA polymerase. Nucl Acids Res 33:4202–4211

    Article  CAS  PubMed  Google Scholar 

  39. Srivastava A et al (2011) New target for inhibition of bacterial RNA polymerase: “switch region”. Curr Opin Microbiol 14:532–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Svetlov V, Vassylyev D, Artsimovitch I (2004) Discrimination against deoxyribonucleotide substrates by bacterial RNA polymerase. J Biol Chem 279:38087–38090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Temiakov D et al (2005) Structural basis of transcription inhibition by antibiotic streptolydigin. Mol Cell 19:655–666

    Article  CAS  PubMed  Google Scholar 

  42. Tuske S et al (2005) Inhibition of bacterial RNA polymerase by streptolydigin: stabilization of a straight-bridge-helix active-center conformation. Cell 122:541–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Winn M, Goss RJ, Kimura K, Bugg TD (2010) Antimicrobial antibiotics targeting cell wall assembly: recent advances in structure-function studies and nucleoside biosynthesis. Nat Prod Rep 27:279–304

    Article  CAS  PubMed  Google Scholar 

  44. Wright GD (2017) Opportunities for natural products in 21st century antibiotic discovery. Nat Prod Rep 34:694–701

    Article  CAS  PubMed  Google Scholar 

  45. Yuzenkova Y, Roghanian M, Zenkin N (2012) Multiple active centers of multi-subunit RNA polymerases. Transcription 3:115–118

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhang Y et al (2014) GE23077 binds to the RNA polymerase ‘i’ and ‘i + 1’ sites and prevents the binding of initiating nucleotides. eLife 3:e02450

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by NIH Grants GM041376 and AI104660 to RHE and partially supported from a Grant from MIUR Regione Lombardia to NAICONS. We are grateful to all coauthors of the two papers that provided the material for this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Donadio.

Additional information

This article is part of the Special Issue “Natural Product Discovery and Development in the Genomic Era 2019”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maffioli, S.I., Sosio, M., Ebright, R.H. et al. Discovery, properties, and biosynthesis of pseudouridimycin, an antibacterial nucleoside-analog inhibitor of bacterial RNA polymerase. J Ind Microbiol Biotechnol 46, 335–343 (2019). https://doi.org/10.1007/s10295-018-2109-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-018-2109-2

Keywords

Navigation