Skip to main content

Searching for potent and specific antibiotics against pathogenic Helicobacter and Campylobacter strains

Abstract

Menaquinone is an obligatory component of the electron-transfer pathway in microorganisms. Its biosynthetic pathway was established by pioneering studies with Escherichia coli and it was revealed to be derived from chorismate by Men enzymes. However, we identified an alternative pathway, the futalosine pathway, operating in some microorganisms including Helicobacter pylori and Campylobacter jejuni, which cause gastric carcinoma and diarrhea, respectively. Because some useful intestinal bacteria, such as lactobacilli, use the canonical pathway, the futalosine pathway is an attractive target for development of chemotherapeutics for the abovementioned pathogens. In this mini-review, we summarize compounds that inhibit Mqn enzymes involved in the futalosine pathway discovered to date.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Adams J, Pepping J (2005) Vitamin K in the treatment and prevention of osteoporosis and arterial calcification. Am J Health Syst Pharm 62:1574–1581

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Arakawa C, Kuratsu M, Furihata K, Hiratsuka T, Itoh N, Seto H, Dairi T (2011) Diversity of the early step of the futalosine pathway. Antimicrob Agents Chemother 55:913–916

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Bentley R, Meganathan R (1982) Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol Rev 46:241–280

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Cooper LE, Fedoseyenko D, Abdelwahed SH, Kim SH, Dairi T, Begley TP (2013) In vitro reconstitution of the radical S-adenosylmethionine enzyme MqnC involved in the biosynthesis of futalosine-derived menaquinone. Biochemistry 52:4592–4594

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Dahlback B, Villoutreix BO (2005) Regulation of blood coagulation by the protein C anticoagulant pathway: novel insights into structure-function relationships and molecular recognition. Arterioscler Thromb Vasc Biol 25:1311–1320

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Dairi T, Kuzuyama T, Nishiyama M, Fujii I (2011) Convergent strategies in biosynthesis. Nat Prod Rep 28:1054–1086

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Gutierrez JA, Crowder T, Rinaldo-Matthis A, Ho MC, Almo SC, Schramm VL (2009) Transition state analogs of 5’-methylthioadenosine nucleosidase disrupt quorum sensing. Nat Chem Biol 5:251–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Hiratsuka T, Furihata K, Ishikawa J, Yamashita H, Itoh N, Seto H, Dairi T (2008) An alternative menaquinone biosynthetic pathway operating in microorganisms. Science 321:1670–1673

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Joshi S, Mahanta N, Fedoseyenko D, Williams H, Begley TP (2017) Aminofutalosine synthase: evidence for captodative and aryl radical intermediates using beta-scission and SRN1 trapping reactions. J Am Chem Soc 139:10952–10955

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V et al (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Lamson DW, Plaza SM (2003) The anticancer effects of vitamin K. Altern Med Rev 8:303–318

    PubMed  Google Scholar 

  12. 12.

    Li X, Apel D, Gaynor EC, Tanner ME (2011) 5’-methylthioadenosine nucleosidase is implicated in playing a key role in a modified futalosine pathway for menaquinone biosynthesis in Campylobacter jejuni. J Biol Chem 286:19392–19398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    MacKellar FA, Grostic MF, Olson EC, Wnuk RJ (1971) Tirandamycin. I. Structure assignment. J Am Chem Soc 93:4943–4945

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Mahanta N, Fedoseyenko D, Dairi T, Begley TP (2013) Menaquinone biosynthesis: formation of aminofutalosine requires a unique radical SAM enzyme. J Am Chem Soc 135:15318–15321

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Matsui H, Takahashi T, Murayama SY, Kawaguchi M, Matsuo K, Nakamura M (2017) Protective efficacy of a hydroxy fatty acid against gastric Helicobacter infections. Helicobacter 22:e12430

    Article  CAS  Google Scholar 

  16. 16.

    Meganathan R (2001) Biosynthesis of menaquinone (vitamin K2) and ubiquinone (coenzyme Q): a perspective on enzymatic mechanisms. Vitam Horm 61:173–218

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Meyer CE (1971) Tirandamycin, a new antibiotic isolation and characterization. J Antibiot 24:558–560

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Nakamura H, Iitaka Y, Kitahara T, Okazaki T, Okami Y (1977) Structure of aplasmomycin. J Antibiot 30:714–719

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Ogasawara Y, Kondo K, Ikeda A, Harada R, Dairi T (2017) Identification of tirandamycins as specific inhibitors of the futalosine pathway. J Antibiot 70:798–800

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Okami Y, Okazaki T, Kitahara T, Umezawa H (1976) Studies on marine microorganisms. V. A new antibiotic, aplasmomycin, produced by a streptomycete isolated from shallow sea mud. J Antibiot 29:1019–1025

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Reusser F (1976) Tirandamycin, an inhibitor of bacterial ribonucleic acid polymerase. Antimicrob Agents Chemother 10:618–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Seto H, Jinnai Y, Hiratsuka T, Fukawa M, Furihata K, Itoh N, Dairi T (2008) Studies on a new biosynthetic pathway for menaquinone. J Am Chem Soc 130:5614–5615

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Shimizu Y, Ogasawara Y, Matsumoto A, Dairi T (2018) Aplasmomycin and boromycin are specific inhibitors of the futalosine pathway. J Antibiot. https://doi.org/10.1038/s41429-018-0087-2 (in press)

    Article  PubMed  Google Scholar 

  24. 24.

    Takami H, Nakasone K, Takaki Y, Maeno G, Sasaki R, Masui N, Fuji F, Hirama C, Nakamura Y, Ogasawara N, Kuhara S, Horikoshi K (2000) Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res 28:4317–4331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Tanaka R, Kunisada T, Kushida N, Yamada K, Ikeda S, Noike M, Ono Y, Itoh N, Takami H, Seto H, Dairi T (2011) Branched fatty acids inhibit the biosynthesis of menaquinone in Helicobacter pylori. J Antibiot 64:151–153

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Wang S, Cameron SA, Clinch K, Evans GB, Wu Z, Schramm VL, Tyler PC (2015) New antibiotic candidates against Helicobacter pylori. J Am Chem Soc 137:14275–14280

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Wang S, Haapalainen AM, Yan F, Du Q, Tyler PC, Evans GB, Rinaldo-Matthis A, Brown RL, Norris GE, Almo SC, Schramm VL (2012) A picomolar transition state analogue inhibitor of MTAN as a specific antibiotic for Helicobacter pylori. Biochemistry 51:6892–6894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Yamamoto T, Matsui H, Yamaji K, Takahashi T, Overby A, Nakamura M, Matsumoto A, Nonaka K, Sunazuka T, Omura S, Nakano H (2016) Narrow-spectrum inhibitors targeting an alternative menaquinone biosynthetic pathway of Helicobacter pylori. J Infect Chemother 22:587–592

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid for Scientific Research on Innovative Areas from MEXT, Japan (JSPS KAKENHI Grant number 16H06452) and Grants-in-Aid for Scientific Research from JSPS (18H03937) to T.D. We thank Robbie Lewis, MSc, from Edanz Group (http://www.edanzediting.com/ac) for editing a draft of this manuscript.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yasushi Ogasawara or Tohru Dairi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This article is part of the Special Issue “Natural Product Discovery and Development in the Genomic Era 2019”.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ogasawara, Y., Dairi, T. Searching for potent and specific antibiotics against pathogenic Helicobacter and Campylobacter strains. J Ind Microbiol Biotechnol 46, 409–414 (2019). https://doi.org/10.1007/s10295-018-2108-3

Download citation

Keywords

  • Menaquinone
  • Biosynthesis
  • Futalosine pathway
  • Inhibitors