Skip to main content
Log in

Improved acid-stress tolerance of Lactococcus lactis NZ9000 and Escherichia coli BL21 by overexpression of the anti-acid component recT

  • Genetics and Molecular Biology of Industrial Organisms - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Acid accumulation caused by carbon metabolism severely affects the fermentation performance of microbial cells. Here, different sources of the recT gene involved in homologous recombination were functionally overexpressed in Lactococcus lactis NZ9000 and Escherichia coli BL21, and their acid-stress tolerances were investigated. Our results showed that L. lactis NZ9000 (ERecT and LRecT) strains showed 1.4- and 10.4-fold higher survival rates against lactic acid (pH 4.0), respectively, and that E. coli BL21 (ERecT) showed 16.7- and 9.4-fold higher survival rates than the control strain against lactic acid (pH 3.8) for 40 and 60 min, respectively. Additionally, we found that recT overexpression in L. lactis NZ9000 improved their growth under acid-stress conditions, as well as increased salt- and ethanol-stress tolerance and intracellular ATP concentrations in L. lactis NZ9000. These findings demonstrated the efficacy of recT overexpression for enhancing acid-stress tolerance and provided a promising strategy for insertion of anti-acid components in different hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdullah Al M, Sugimoto S, Higashi C, Matsumoto S, Sonomoto K (2010) Improvement of multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 under conditions of thermal stress by heterologous expression of Escherichia coli dnaK. Appl Environ Microbiol 76:4277–4285. https://doi.org/10.1128/aem.02878-09

    Article  Google Scholar 

  2. Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–421. https://doi.org/10.1016/S0958-1669(99)00003-8

    Article  CAS  PubMed  Google Scholar 

  3. Basak S, Geng H, Jiang R (2014) Rewiring global regulator cAMP receptor protein (CRP) to improve E. coli tolerance towards low pH. J Biotechnol 173:68–75. https://doi.org/10.1016/j.jbiotec.2014.01.015

    Article  CAS  PubMed  Google Scholar 

  4. Casadaban MJ, Cohen SN (1980) Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol 138:179–207. https://doi.org/10.1016/0022-2836(80)90283-1

    Article  CAS  PubMed  Google Scholar 

  5. Chong HQ, Huang L, Yeow JW, Wang I, Zhang HF, Song H, Jiang RR (2013) Improving ethanol tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP). PLoS One 8:9. https://doi.org/10.1371/journal.pone.0057628

    Article  CAS  Google Scholar 

  6. Court DL, Sawitzke JA, Thomason LC (2002) Genetic engineering using homologous recombination. Annu Rev Genet 36:361–388. https://doi.org/10.1146/annurev.genet.36.061102.093104

    Article  CAS  PubMed  Google Scholar 

  7. Cunha JT, Costa CE, Ferraz L, Romaní A, Johansson B, Sá-Correia I, Domingues L (2018) HAA1 and PRS3 overexpression boosts yeast tolerance towards acetic acid improving xylose or glucose consumption: unravelling the underlying mechanisms. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-018-8955-z

    Article  PubMed  Google Scholar 

  8. De Angelis M, Gobbetti M (2004) Environmental stress responses in Lactobacillus: a review. Proteomics 4:106–122. https://doi.org/10.1002/pmic.200300497

    Article  CAS  PubMed  Google Scholar 

  9. Dong H, Tao W, Gong F, Li Y, Zhang Y (2014) A functional recT gene for recombineering of Clostridium. J Biotechnol 173:65–67. https://doi.org/10.1016/j.jbiotec.2013.12.011

    Article  CAS  PubMed  Google Scholar 

  10. Even S, Lindley ND, Loubiere P, Cocaign-Bousquet M (2002) Dynamic response of catabolic pathways to autoacidification in Lactococcus lactis: transcript profiling and stability in relation to metabolic and energetic constraints. Mol Microbiol 45:1143–1152. https://doi.org/10.1046/j.1365-2958.2002.03086.x

    Article  CAS  PubMed  Google Scholar 

  11. Fry B, Zhu T, Domach M, Koepsel R, Phalakornkule C, Ataai M (2000) Characterization of growth and acid formation in a Bacillus subtilis pyruvate kinase mutant. Appl Environ Microbiol 66:4045–4049. https://doi.org/10.1128/AEM.66.9.4045-4049.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gaida SM, Al-Hinai MA, Indurthi DC, Nicolaou SA, Papoutsakis ET (2013) Synthetic tolerance: three noncoding small RNAs, DsrA, ArcZ and RprA, acting supra-additively against acid stress. Nucleic Acids Res 41:8726–8737. https://doi.org/10.1093/nar/gkt651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gao XY, Sun T, Wu LN, Chen L, Zhang WW (2017) Co-overexpression of response regulator genes slr1037 and sll0039 improves tolerance of Synechocystis sp PCC 6803 to 1-butanol. Bioresour Technol 245:1476–1483. https://doi.org/10.1016/j.biortech.2017.04.112

    Article  CAS  PubMed  Google Scholar 

  14. Ge XY, Yuan J, Qin H, Zhang WG (2011) Improvement of l-lactic acid production by osmotic-tolerant mutant of Lactobacillus casei at high temperature. Appl Microbiol Biotechnol 89:73–78. https://doi.org/10.1007/s00253-010-2868-9

    Article  CAS  PubMed  Google Scholar 

  15. Guan N, Li J, Shin Hd, Du G, Chen J, Liu L (2016) Metabolic engineering of acid resistance elements to improve acid resistance and propionic acid production of Propionibacterium jensenii. Biotechnol Bioeng 113:1294–1304. https://doi.org/10.1002/bit.25902

    Article  CAS  PubMed  Google Scholar 

  16. Guan NZ, Li JH, Shin HD, Du GC, Chen J, Liu L (2017) Microbial response to environmental stresses: from fundamental mechanisms to practical applications. Appl Microbiol Biotechnol 101:3991–4008. https://doi.org/10.1007/s00253-017-8264-y

    Article  CAS  PubMed  Google Scholar 

  17. Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22:346–353. https://doi.org/10.1016/j.tibtech.2004.04.006

    Article  CAS  PubMed  Google Scholar 

  18. Holo H, Nes IF (1989) High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 55:3119–3123

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kuipers OP, de Ruyter PGGA, Kleerebezem M, de Vos WM (1998) Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64:15–21. https://doi.org/10.1016/S0168-1656(98)00100-X

    Article  CAS  Google Scholar 

  20. Li X, Heyer W-D (2008) Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18:99. https://doi.org/10.1038/cr.2008.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li Y, Hugenholtz J, Sybesma W, Abee T, Molenaar D (2005) Using Lactococcus lactis for glutathione overproduction. Appl Microbiol Biotechnol 67:83–90. https://doi.org/10.1007/s00253-004-1762-8

    Article  CAS  PubMed  Google Scholar 

  22. Liu JJ, Ding WT, Zhang GC, Wang JY (2011) Improving ethanol fermentation performance of Saccharomyces cerevisiae in very high-gravity fermentation through chemical mutagenesis and meiotic recombination. Appl Microbiol Biotechnol 91:1239–1246. https://doi.org/10.1007/s00253-011-3404-2

    Article  CAS  PubMed  Google Scholar 

  23. Negrete A, Shiloach J (2015) Constitutive expression of the sRNA GadY decreases acetate production and improves E. coli growth. Microb Cell Fact 14:10. https://doi.org/10.1186/s12934-015-0334-1

    Article  CAS  Google Scholar 

  24. Nezhad MH, Hussain MA, Britz ML (2015) Stress responses in probiotic Lactobacillus casei. Crit Rev Food Sci Nutr 55:740–749. https://doi.org/10.1080/10408398.2012.675601

    Article  CAS  Google Scholar 

  25. Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12:307–331. https://doi.org/10.1016/j.ymben.2010.03.004

    Article  CAS  PubMed  Google Scholar 

  26. Papagianni M (2012) Metabolic engineering of lactic acid bacteria for the production of industrially important compounds. Comput Struct Biotechnol J. https://doi.org/10.5936/csbj.201210003

    Article  PubMed  PubMed Central  Google Scholar 

  27. Papagianni M (2012) Recent advances in engineering the central carbon metabolism of industrially important bacteria. Microb Cell Fact 11:50. https://doi.org/10.1186/1475-2859-11-50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ramos A, Neves AR, Ventura R, Maycock C, Lopez P, Santos H (2004) Effect of pyruvate kinase overproduction on glucose metabolism of Lactococcus lactis. Microbiology 150:1103–1111. https://doi.org/10.1099/mic.0.26695-0

    Article  CAS  PubMed  Google Scholar 

  29. Vlasic I, Mertens R, Seco EM, Carrasco B, Ayora S, Reitz G, Commichau FM, Alonso JC, Moeller R (2014) Bacillus subtilis RecA and its accessory factors, RecF, RecO, RecR and RecX, are required for spore resistance to DNA double-strand break. Nucleic Acids Res 42:2295–2307. https://doi.org/10.1093/nar/gkt1194

    Article  CAS  PubMed  Google Scholar 

  30. Weidmann S, Maitre M, Laurent J, Coucheney F, Rieu A, Guzzo J (2017) Production of the small heat shock protein Lo18 from Oenococcus oeni in Lactococcus lactis improves its stress tolerance. Int J Food Microbiol 247:18–23. https://doi.org/10.1016/j.ijfoodmicro.2016.06.005

    Article  CAS  PubMed  Google Scholar 

  31. Wigley DB (2013) Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB. Nat Rev Microbiol 11:9–13. https://doi.org/10.1038/nrmicro2917

    Article  CAS  PubMed  Google Scholar 

  32. Wu C, Zhang J, Du G, Chen J (2013) Aspartate protects Lactobacillus casei against acid stress. Appl Microbiol Biotechnol 97:4083–4093. https://doi.org/10.1007/s00253-012-4647-2

    Article  CAS  PubMed  Google Scholar 

  33. Wu C, Zhang J, Du G, Chen J (2013) Heterologous expression of Lactobacillus casei RecO improved the multiple-stress tolerance and lactic acid production in Lactococcus lactis NZ9000 during salt stress. Bioresour Technol 143:238–241. https://doi.org/10.1016/j.biortech.2013.05.050

    Article  CAS  PubMed  Google Scholar 

  34. Wu CD, Huang J, Zhou RQ (2014) Progress in engineering acid stress resistance of lactic acid bacteria. Appl Microbiol Biotechnol 98:1055–1063. https://doi.org/10.1007/s00253-013-5435-3

    Article  CAS  PubMed  Google Scholar 

  35. Wu CD, Huang J, Zhou RQ (2017) Genomics of lactic acid bacteria: current status and potential applications. Crit Rev Microbiol 43:393–404. https://doi.org/10.1080/1040841x.2016.1179623

    Article  PubMed  Google Scholar 

  36. Zhai ZY, An HR, Wang GH, Luo YB, Hao YL (2015) Functional role of pyruvate kinase from Lactobacillus bulgaricus in acid tolerance and identification of its transcription factor by bacterial one-hybrid. Sci Rep 5:10. https://doi.org/10.1038/srep17024

    Article  CAS  Google Scholar 

  37. Zhang J, Caiyin Q, Feng WJ, Zhao XL, Qiao B, Zhao GR, Qiao JJ (2016) Enhance nisin yield via improving acid-tolerant capability of Lactococcus lactis F44. Sci Rep 6:12. https://doi.org/10.1038/srep27973

    Article  CAS  Google Scholar 

  38. Zhang RB, Cao YJ, Liu W, Xian M, Liu HZ (2017) Improving phloroglucinol tolerance and production in Escherichia coli by GroESL overexpression. Microb Cell Fact 16:10. https://doi.org/10.1186/s12934-017-0839-x

    Article  Google Scholar 

  39. Zhou S, Ding R, Chen J, Du G, Li H, Zhou J (2017) Obtaining a panel of cascade promoter–5′-UTR complexes in Escherichia coli. ACS Synth Biol 6:1065–1075. https://doi.org/10.1021/acssynbio.7b00006

    Article  CAS  PubMed  Google Scholar 

  40. Zhu Z, Zhang J, Ji X, Fang Z, Wu Z, Chen J, Du G (2018) Evolutionary engineering of industrial microorganisms-strategies and applications. Appl Microbiol Biotechnol 102:4615–4627. https://doi.org/10.1007/s00253-018-8937-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31470160), the project of Integration of Industry, Education and Research of Jiangsu Province, China (BY2016022-39), the grant from Pioneer Innovative Research Team of Dezhou, Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R26), the Program of Introducing Talents of Discipline to Universities (No. 111-2-06), and the Open Project of Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University (KLIB-KF201706).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhimeng Wu or Juan Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 817 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Ji, X., Wu, Z. et al. Improved acid-stress tolerance of Lactococcus lactis NZ9000 and Escherichia coli BL21 by overexpression of the anti-acid component recT. J Ind Microbiol Biotechnol 45, 1091–1101 (2018). https://doi.org/10.1007/s10295-018-2075-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-018-2075-8

Keywords

Navigation