Advertisement

Redox cofactor engineering in industrial microorganisms: strategies, recent applications and future directions

  • Jiaheng Liu
  • Huiling Li
  • Guangrong Zhao
  • Qinggele Caiyin
  • Jianjun Qiao
Metabolic Engineering and Synthetic Biology - Review

Abstract

NAD and NADP, a pivotal class of cofactors, which function as essential electron donors or acceptors in all biological organisms, drive considerable catabolic and anabolic reactions. Furthermore, they play critical roles in maintaining intracellular redox homeostasis. However, many metabolic engineering efforts in industrial microorganisms towards modification or introduction of metabolic pathways, especially those involving consumption, generation or transformation of NAD/NADP, often induce fluctuations in redox state, which dramatically impede cellular metabolism, resulting in decreased growth performance and biosynthetic capacity. Here, we comprehensively review the cofactor engineering strategies for solving the problematic redox imbalance in metabolism modification, as well as their features, suitabilities and recent applications. Some representative examples of in vitro biocatalysis are also described. In addition, we briefly discuss how tools and methods from the field of synthetic biology can be applied for cofactor engineering. Finally, future directions and challenges for development of cofactor redox engineering are presented.

Keywords

Cofactor engineering Redox balance Metabolic engineering Cofactor specificity Synthetic biology 

Notes

Acknowledgements

This study was supported by the National Key Research and Development Project of China (2017YFD0201400), the National Natural Science Foundation of China (31570089, 31170076), and the Funds for Creative Research Groups of China (21621004). Dr. Jianjun Qiao was supported by the New Century Outstanding Talent Support Program, Education Ministry of China.

References

  1. 1.
    Akhtar MK, Jones PR (2014) Cofactor engineering for enhancing the flux of metabolic pathways. Front Bioeng Biotechnol 2:30.  https://doi.org/10.3389/fbioe.2014.00030 PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Baker JL, Derr AM, Faustoferri RC, Quivey RG Jr (2015) Loss of NADH oxidase activity in Streptococcus mutans leads to Rex-mediated overcompensation in NAD+ regeneration by lactate dehydrogenase. J Bacteriol 197:3645–3657.  https://doi.org/10.1128/JB.00383-15 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Balzer GJ, Thakker C, Bennett GN, San KY (2013) Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD(+)-dependent formate dehydrogenase. Metab Eng 20:1–8.  https://doi.org/10.1016/j.ymben.2013.07.005 PubMedCrossRefGoogle Scholar
  4. 4.
    Bao T, Zhang X, Rao Z, Zhao X, Zhang R, Yang T, Xu Z, Yang S (2014) Efficient whole-cell biocatalyst for acetoin production with NAD+ regeneration system through homologous co-expression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis. PLoS One 9:e102951.  https://doi.org/10.1371/journal.pone.0102951 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Bastian S, Liu X, Meyerowitz JT, Snow CD, Chen MM, Arnold FH (2011) Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng 13:345–352.  https://doi.org/10.1016/j.ymben.2011.02.004 PubMedCrossRefGoogle Scholar
  6. 6.
    Bengtsson O, Hahnhägerdal B, Gorwagrauslund MF (2009) Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 2:9.  https://doi.org/10.1186/1754-6834-2-9 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Berríos-Rivera SJ, San KY, Bennett GN (2002) The effect of NAPRTase overexpression on the total levels of NAD, the NADH/NAD+ ratio, and the distribution of metabolites in Escherichia coli. Metab Eng 4:238–247PubMedCrossRefGoogle Scholar
  8. 8.
    Bommareddy RR, Chen Z, Rappert S, Zeng AP (2014) A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metab Eng 25:30–37.  https://doi.org/10.1016/j.ymben.2014.06.005 PubMedCrossRefGoogle Scholar
  9. 9.
    Bongers RS, Hoefnagel MH, Kleerebezem M (2005) High-level acetaldehyde production in Lactococcus lactis by metabolic engineering. Appl Environ Microbiol 71:1109–1113.  https://doi.org/10.1128/AEM.71.2.1109-1113.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Boonstra B, Rathbone DA, Bruce NC (2001) Engineering novel biocatalytic routes for production of semisynthetic opiate drugs. Biomol Eng 18:41–47PubMedCrossRefGoogle Scholar
  11. 11.
    Brekasis D, Paget MSB (2003) A novel sensor of NADH/NAD+ redox poise in Streptomyces coelicolor A3(2). EMBO J 22:4856–4865.  https://doi.org/10.1093/emboj/cdg453 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Brinkmann-Chen S, Flock T, Cahn JK, Snow CD, Brustad EM, McIntosh JA, Meinhold P, Zhang L, Arnold FH (2013) General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH. PNAS 110:10946–10951.  https://doi.org/10.1073/pnas.1306073110 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Buckel W, Thauer RK (2013) Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation. Biochem Biophys Acta 1827:94–113.  https://doi.org/10.1016/j.bbabio.2012.07.002 PubMedCrossRefGoogle Scholar
  14. 14.
    Cahn JK, Werlang CA, Baumschlager A, Brinkmann-Chen S, Mayo SL, Arnold FH (2017) A general tool for engineering the NAD/NADP cofactor preference of oxidoreductases. ACS Synth Biol 6:326–333.  https://doi.org/10.1021/acssynbio.6b00188 PubMedCrossRefGoogle Scholar
  15. 15.
    Cai D, He P, Lu X, Zhu C, Zhu J, Zhan Y, Wang Q, Wen Z, Chen S (2017) A novel approach to improve poly-gamma-glutamic acid production by NADPH regeneration in Bacillus licheniformis WX-02. Sci Rep 7:43404.  https://doi.org/10.1038/srep43404 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Canonaco F, Hess TA, Heri S, Wang T, Szyperski T, Sauer U (2001) Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA. FEMS Microbiol Lett 204:247–252.  https://doi.org/10.1111/j.1574-6968.2001.tb10892.x PubMedCrossRefGoogle Scholar
  17. 17.
    Carugo O, Argos P (1997) NADP-dependent enzymes. I: conserved stereochemistry of cofactor binding. Proteins 28:10–28. https://doi.org/10.1002/(SICI)1097-0134(199705)28:1<10:AID-PROT2>3.0.CO;2-NGoogle Scholar
  18. 18.
    Chen QA, Chen MW, Yu CB, Shi L, Wang DS, Yang Y, Zhou YG (2012) Biomimetic asymmetric hydrogenation: in situ regenerable Hantzsch esters for asymmetric hydrogenation of benzoxazinones. J Am Chem Soc 133:16432–16435.  https://doi.org/10.1021/ja208073w CrossRefGoogle Scholar
  19. 19.
    Chen QA, Gao K, Duan Y, Ye ZS, Shi L, Yang Y, Zhou YG (2012) Dihydrophenanthridine: a new and easily regenerable NAD(P)H model for biomimetic asymmetric hydrogenation. J Am Chem Soc 134:2442–2448.  https://doi.org/10.1021/ja211684v PubMedCrossRefGoogle Scholar
  20. 20.
    Chen X, Li S, Liu L (2014) Engineering redox balance through cofactor systems. Trends Biotechnol 32:337–343.  https://doi.org/10.1016/j.tibtech.2014.04.003 PubMedCrossRefGoogle Scholar
  21. 21.
    Chen Y, Xu D, Fan L, Zhang X, Tan T (2015) Manipulating multi-system of nadph regulation in Escherichia coli for enhanced s-adenosylmethionine production. Rsc Adv 5:41103–41111.  https://doi.org/10.1039/C5RA02937F CrossRefGoogle Scholar
  22. 22.
    Choi YN, Park JM (2016) Enhancing biomass and ethanol production by increasing NADPH production in Synechocystis sp. PCC 6803. Bioresour Technol 213:54–57.  https://doi.org/10.1016/j.biortech.2016.02.056 PubMedCrossRefGoogle Scholar
  23. 23.
    Costas AM, White AK, Metcalf WW (2001) Purification and characterization of a novel phosphorus-oxidizing enzyme from Pseudomonas stutzeri WM88. J Biol Chem 276:17429–17436.  https://doi.org/10.1074/jbc.M011764200 PubMedCrossRefGoogle Scholar
  24. 24.
    Cui D, Zhang L, Jiang S, Yao Z, Gao B, Lin J, Yuan YA, Wei D (2015) A computational strategy for altering an enzyme in its cofactor preference to NAD(H) and/or NADP(H). FEBS J 282:2339–2351.  https://doi.org/10.1111/febs.13282 PubMedCrossRefGoogle Scholar
  25. 25.
    Dai Z, Dong H, Zhang Y, Li Y (2016) Elucidating the contributions of multiple aldehyde/alcohol dehydrogenases to butanol and ethanol production in Clostridium acetobutylicum. Sci Rep 6:28189.  https://doi.org/10.1038/srep28189 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Enm S, Eys K, Hlr C, Bonato P, Pedrosa FO, de Souza EM, Chubatsu LS, Müller-Santos M (2017) The transcriptional regulator NtrC controls glucose-6-phosphate dehydrogenase expression and polyhydroxybutyrate synthesis through NADPH availability in Herbaspirillum seropedicae. Sci Rep 7:13546.  https://doi.org/10.1038/s41598-017-12649-0 CrossRefGoogle Scholar
  27. 27.
    Esser D, Kouril T, Talfournier F, Polkowska J, Schrader T, Bräsen C, Siebers B (2013) Unraveling the function of paralogs of the aldehyde dehydrogenase super family from Sulfolobus solfataricus. Extremophiles 17:205–216.  https://doi.org/10.1007/s00792-012-0507-3 PubMedCrossRefGoogle Scholar
  28. 28.
    Gao H, Tiwari MK, Kang YC, Lee JK (2012) Characterization of H2O-forming NADH oxidase from Streptococcus pyogenes and its application in L-rare sugar production. Bioorg Med Chem Lett 22:1931–1935.  https://doi.org/10.1016/j.bmcl.2012.01.049 PubMedCrossRefGoogle Scholar
  29. 29.
    Gul-Karaguler N, Sessions RB, Clarke AR, Holbrook JJ (2001) A single mutation in the NAD-specific formate dehydrogenase from Candida methylica allows the enzyme to use NADP. Biotechnol Lett 23:283–287.  https://doi.org/10.1023/A:1005610414179 CrossRefGoogle Scholar
  30. 30.
    Guo T, Kong J, Zhang L, Zhang C, Hu S (2012) Fine tuning of the lactate and diacetyl production through promoter engineering in Lactococcus lactis. PLoS One 7:e36296.  https://doi.org/10.1371/journal.pone.0036296 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Gyan S, Shiohira Y, Sato I, Takeuchi M, Sato T (2006) Regulatory loop between redox sensing of the NADH/NAD(+) ratio by Rex (YdiH) and oxidation of NADH by NADH dehydrogenase Ndh in Bacillus subtilis. J Bacteriol 188:7062–7071.  https://doi.org/10.1128/JB.00601-06 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Han Q, Eiteman MA (2017) Coupling xylitol dehydrogenase with NADH oxidase improves l-xylulose production in Escherichia coli culture. Enzyme Microb Tech 106:106–113.  https://doi.org/10.1016/j.enzmictec.2017.07.010 CrossRefGoogle Scholar
  33. 33.
    Hao G, Chen H, Wang L, Gu Z, Song Y, Zhang H, Chen W, Chen YQ (2014) Role of malic enzyme during fatty acid synthesis in the oleaginous fungus Mortierella alpina. Appl Environ Microbiol 80:2672–2678.  https://doi.org/10.1128/AEM.00140-14 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Hao G, Chen H, Du K, Huang X, Song Y, Gu Z, Wang L, Zhang H, Chen W, Chen YQ (2014) Increased fatty acid unsaturation and production of arachidonic acid by homologous over-expression of the mitochondrial malic enzyme in Mortierella alpina. Biotechnol Lett 36:1827–1834.  https://doi.org/10.1007/s10529-014-1546-x PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hao G, Chen H, Gu Z, Zhang H, Chen W, Chen YQ (2016) Metabolic engineering of Mortierella alpina for enhanced arachidonic acid production through the NADPH-supplying strategy. Appl Environ Microbiol 82:3280–3288.  https://doi.org/10.1128/AEM.00572-16 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Hasegawa S, Suda M, Uematsu K, Natsuma Y, Hiraga K, Jojima T, Inui M, Yukawa H (2013) Engineering of Corynebacterium glutamicum for high-yield l-valine production under oxygen deprivation conditions. Appl Environ Microbiol 79:1250–1257.  https://doi.org/10.1128/AEM.02806-12 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Hoelsch K, Suhrer I, Heusel M, Weuster-Botz D (2013) Engineering of formate dehydrogenase: synergistic effect of mutations affecting cofactor specificity and chemical stability. Appl Microbiol Biotechnol 97:2473–2481.  https://doi.org/10.1007/s00253-012-4142-9 PubMedCrossRefGoogle Scholar
  38. 38.
    Hong SH, Ngo HP, Nam HK, Kim KR, Kang LW, Oh DK (2016) Alternative biotransformation of retinal to retinoic acid or retinol by an aldehyde dehydrogenase from Bacillus cereus. Appl Environ Microbiol 82:3940–3946.  https://doi.org/10.1128/AEM.00848-16 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Huang H, Wang S, Moll J, Thauer RK (2012) Electron bifurcation involved in the energy metabolism of the acetogenic bacterium Moorella thermoacetica growing on glucose or H2 plus CO2. J Bacteriol 194:3689–3699.  https://doi.org/10.1128/JB.00385-12 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Islam ZU, Klein M, Asskamp MR, Odum ASR, Nevoigt E (2017) A modular metabolic engineering approach for the production of 1,2-propanediol from glycerol by Saccharomyces cerevisiae. Metab Eng 44:223–235.  https://doi.org/10.1016/j.ymben.2017.10.002 PubMedCrossRefGoogle Scholar
  41. 41.
    Jan J, Martinez I, Wang Y, Bennett GN, San KY (2013) Metabolic engineering and transhydrogenase effects on NADPH availability in Escherichia coli. Biotechnol Prog 29:1124–1130.  https://doi.org/10.1002/btpr.1765 PubMedCrossRefGoogle Scholar
  42. 42.
    Jang YS, Park JM, Choi S, Yong JC, Seung DY, Cho JH, Lee SY (2012) Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. Biotechnol Adv 30:989–1000.  https://doi.org/10.1016/j.biotechadv.2011.08.015 PubMedCrossRefGoogle Scholar
  43. 43.
    Jawed M, Jian P, Li X, Zhang H, Hakeem A, Yan Y (2016) Enhanced H2, production and redirected metabolic flux via overexpression of fhlA, and pncB, in Klebsiella HQ-3 strain. Appl Biochem Biotechnol 178:1113–1128.  https://doi.org/10.1007/s12010-015-1932-4 PubMedCrossRefGoogle Scholar
  44. 44.
    Jayachandran C, Palanisamy AB, Sankaranarayanan M (2017) Cofactor engineering improved CALB production in Pichia pastoris through heterologous expression of NADH oxidase and adenylate kinase. PLoS One 12:e0181370.  https://doi.org/10.1371/journal.pone.0181370 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Jeffries TW (1985) Emerging technology for fermenting D-xylose. Trends Biotechnol 3:208–212CrossRefGoogle Scholar
  46. 46.
    Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17:320–326.  https://doi.org/10.1016/j.copbio.2006.05.008 PubMedCrossRefGoogle Scholar
  47. 47.
    Ji D, Wang L, Hou S, Liu W, Wang J, Wang Q, Zhao ZK (2011) Creation of bioorthogonal redox systems depending on nicotinamide flucytosine dinucleotide. J Am Chem Soc 133:20857–20862.  https://doi.org/10.1021/ja2074032 PubMedCrossRefGoogle Scholar
  48. 48.
    Jiang LY, Zhang YY, Li Z, Liu JZ (2013) Metabolic engineering of Corynebacterium glutamicum for increasing the production of l-ornithine by increasing NADPH availability. J Ind Microbiol Biot 40:1143–1151.  https://doi.org/10.1007/s10295-013-1306-2 CrossRefGoogle Scholar
  49. 49.
    Jin H, Fan S, Wang C, Li X, Yu S, Bao X (2014) Fine-tuning of NADH oxidase decreases byproduct accumulation in respiration deficient xylose metabolic Saccharomyces cerevisiae. BMC Biotechnol 14:13.  https://doi.org/10.1186/1472-6750-14-13 CrossRefGoogle Scholar
  50. 50.
    Jin XM, Chang YK, Lee JH, Hong SK (2017) Effects of increased NADPH concentration by metabolic engineering of the pentose phosphate pathway on antibiotic production and sporulation in Streptomyces lividans TK24. J Microbiol Biotechnol 27:1867–1876.  https://doi.org/10.4014/jmb.1707.07046 PubMedCrossRefGoogle Scholar
  51. 51.
    Johannes TW, Woodyer RD, Zhao H (2005) Directed evolution of a thermostable phosphite dehydrogenase for NAD(P)H regeneration. Appl Environ Microbiol 71:5728–5734.  https://doi.org/10.1128/AEM.71.10.5728-5734.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Johannes TW, Woodyer RD, Zhao H (2007) Efficient regeneration of NADPH using an engineered phosphite dehydrogenase. Biotechnol Bioeng 96:18–26.  https://doi.org/10.1002/bit.21168 PubMedCrossRefGoogle Scholar
  53. 53.
    Johansson N, Persson KO, Norbeck J, Larsson C (2017) Expression of NADH-oxidases enhances ethylene productivity in Saccharomyces cerevisiae expressing the bacterial EFE. Biotechnol Bioproc E 22:195–199.  https://doi.org/10.1007/s12257-016-0602-x CrossRefGoogle Scholar
  54. 54.
    Kabus A, Georgi T, Wendisch VF, Bott M (2007) Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves l-lysine formation. Appl Microbiol Biotechnol 75:47–53.  https://doi.org/10.1007/s00253-006-0804-9 PubMedCrossRefGoogle Scholar
  55. 55.
    Kandasamy V, Liu J, Dantoft SH, Solem C, Jensen PR (2016) Synthesis of (3R)-acetoin and 2,3-butanediol isomers by metabolically engineered Lactococcus lactis. Sci Rep 6:e36769.  https://doi.org/10.1038/srep36769 CrossRefGoogle Scholar
  56. 56.
    Kawai S, Mori S, Mukai T, Hashimoto W, Murata K (2001) Molecular characterization of Escherichia coli NAD kinase. Eur J Biochem 268:4359–4365.  https://doi.org/10.1046/j.1432-1327.2001.02358.x PubMedCrossRefGoogle Scholar
  57. 57.
    Khattab SMR, Kodaki T (2014) Efficient bioethanol production by overexpression of endogenous Saccharomyces cerevisiae xylulokinase and NADPH-dependent aldose reductase with mutated strictly NADP+-dependent Pichia stipitis xylitol dehydrogenase. Process Biochem 49:1838–1842.  https://doi.org/10.1016/j.procbio.2014.07.017 CrossRefGoogle Scholar
  58. 58.
    Khattab SMR, Saimura M, Kodaki T (2013) Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP+-dependent xylitol dehydrogenase. J Biotechnol 165:153–156.  https://doi.org/10.1016/j.jbiotec.2013.03.009 PubMedCrossRefGoogle Scholar
  59. 59.
    Kim JW, Seo SO, Zhang GC, Jin YS, Seo JH (2015) Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae. Bioresour Technol 191:512–519.  https://doi.org/10.1016/j.biortech.2015.02.077 PubMedCrossRefGoogle Scholar
  60. 60.
    Kim S, Hahn JS (2015) Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing. Metab Eng 31:94–101.  https://doi.org/10.1016/j.ymben.2015.07.006 PubMedCrossRefGoogle Scholar
  61. 61.
    Klein M, Carrillo M, Xiberras J, Islam ZU, Swinnen S, Nevoigt E (2016) Towards the exploitation of glycerol’s high reducing power in Saccharomyces cerevisiae-based bioprocesses. Metab Eng 38:464–472.  https://doi.org/10.1016/j.ymben.2016.10.008 PubMedCrossRefGoogle Scholar
  62. 62.
    Knaus T, Paul CE, Levy CW, de Vries S, Mutti FG, Hollmann F, Scrutton NS (2016) Better than nature: nicotinamide biomimetics that outperform natural coenzymes. J Am Chem Soc 138:1033–1039.  https://doi.org/10.1021/jacs.5b12252 PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY (2012) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol 8:536–546.  https://doi.org/10.1038/nchembio.970 PubMedCrossRefGoogle Scholar
  64. 64.
    Lee SY, Kim HU (2015) Systems strategies for developing industrial microbial strains. Nat Biotechnol 33:1061–1072.  https://doi.org/10.1038/nbt.3365 PubMedCrossRefGoogle Scholar
  65. 65.
    Lee WH, Chin YW, Han NS, Kim MD, Seo JH (2011) Enhanced production of GDP-L-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli. Appl Microbiol Biotechnol 91:967–976.  https://doi.org/10.1007/s00253-011-3271-x PubMedCrossRefGoogle Scholar
  66. 66.
    Lee WH, Kim JW, Park EH, Han NS, Kim MD, Seo JH (2013) Effects of NADH kinase on NADPH-dependent biotransformation processes in Escherichia coli. Appl Microbiol Biotechnol 97:1561–1569.  https://doi.org/10.1007/s00253-012-4431-3 PubMedCrossRefGoogle Scholar
  67. 67.
    Li N, Wang Y, Zhu P, Liu Z, Guo B, Ren J (2015) Improvement of exopolysaccharide production in Lactobacillus casei LC2 W by overexpression of NADH oxidase gene. Microbiol Res 171:73–77.  https://doi.org/10.1016/j.micres.2014.12.006 PubMedCrossRefGoogle Scholar
  68. 68.
    Lim JH, Seo SW, Kim SY, Jung GY (2013) Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli. Metab Eng 20:56–62.  https://doi.org/10.1016/j.ymben.2013.09.003 PubMedCrossRefGoogle Scholar
  69. 69.
    Lin Z, Zhang Y, Yuan Q, Liu Q, Li Y, Wang Z, Ma H, Chen T, Zhao X (2015) Metabolic engineering of Escherichia coli for poly(3-hydroxybutyrate) production via threonine bypass. Microb Cell Fact 14:185.  https://doi.org/10.1186/s12934-015-0369-3 PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Liu J, Chan SH, Brock-Nannestad T, Chen J, Lee SY, Solem C, Jensen PR (2016) Combining metabolic engineering and biocompatible chemistry for high-yield production of homo-diacetyl and homo-(S, S)-2,3-butanediol. Metab Eng 36:57–67.  https://doi.org/10.1016/j.ymben.2016.02.008 PubMedCrossRefGoogle Scholar
  71. 71.
    Liu J, Wang Z, Kandasamy V, Lee SY, Solem C, Jensen PR (2017) Harnessing the respiration machinery for high-yield production of chemicals in metabolically engineered Lactococcus lactis. Metab Eng 44:22–29.  https://doi.org/10.1016/j.ymben.2017.09.001 PubMedCrossRefGoogle Scholar
  72. 72.
    Liu L, Shah S, Fan J, Park JO, Wellen KE, Rabinowitz JD (2016) Malic enzyme tracers reveal hypoxia-induced switch in adipocyte NADPH pathway usage. Nat Chem Biol 12:345–352.  https://doi.org/10.1038/nchembio.2047 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Liu Z, Zhang Y, Jia X, Hu M, Deng Z, Xu Y, Liu T (2017) In vitro reconstitution and optimization of the entire pathway to convert glucose into fatty acid. ACS Synth Biol 6:701–709.  https://doi.org/10.1021/acssynbio.6b00348 PubMedCrossRefGoogle Scholar
  74. 74.
    Ma J, Gou D, Liang L, Liu R, Chen X, Zhang C, Zhang J, Chen K, Jiang M (2013) Enhancement of succinate production by metabolically engineered Escherichia coli with co-expression of nicotinic acid phosphoribosyltransferase and pyruvate carboxylase. Appl Microbiol Biotechnol 97:6739–6747.  https://doi.org/10.1007/s00253-013-4910-1 PubMedCrossRefGoogle Scholar
  75. 75.
    Maddock DJ, Patrick WM, Gerth ML (2015) Substitutions at the cofactor phosphate-binding site of a clostridial alcohol dehydrogenase lead to unexpected changes in substrate specificity. Protein Eng Des Sel 28:251–258.  https://doi.org/10.1093/protein/gzv028 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Mallin H, Wulf H, Bornscheuer UT (2013) A self-sufficient Baeyer-Villiger biocatalysis system for the synthesis of varepsilon-caprolactone from cyclohexanol. Enzyme Microb Technol 53:283–287.  https://doi.org/10.1016/j.enzmictec.2013.01.007 PubMedCrossRefGoogle Scholar
  77. 77.
    Man Z, Xu M, Rao Z, Guo J, Yang T, Zhang X, Xu Z (2016) Systems pathway engineering of Corynebacterium crenatum for improved l-arginine production. Sci Rep 6:28629.  https://doi.org/10.1038/srep28629 PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Martínez I, Zhu J, Lin H, Bennett GN, San KY (2008) Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metab Eng 10:352–359.  https://doi.org/10.1016/j.ymben.2008.09.001 PubMedCrossRefGoogle Scholar
  79. 79.
    Matsushika A, Watanabe S, Kodaki T, Makino K, Inoue H, Murakami K, Takimura O, Sawayama S (2008) Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol 81:243–255.  https://doi.org/10.1007/s00253-008-1649-1 PubMedCrossRefGoogle Scholar
  80. 80.
    Matsushika A, Watanabe S, Kodaki T, Makino K, Sawayama S (2008) Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP(+)-dependent xylitol dehydrogenase, and xylulokinase. J Biosci Bioeng 105:296–299.  https://doi.org/10.1263/jbb.105.296 PubMedCrossRefGoogle Scholar
  81. 81.
    Matsushika A, Inoue H, Kodaki T, Sawayama S (2009) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84:37–53.  https://doi.org/10.1007/s00253-009-2101-x PubMedCrossRefGoogle Scholar
  82. 82.
    Meng H, Liu P, Sun H, Cai Z, Zhou J, Lin J, Li Y (2016) Engineering a D-lactate dehydrogenase that can super-efficiently utilize NADPH and NADH as cofactors. Sci Rep 6:24887.  https://doi.org/10.1038/srep24887 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Mertens R, Greiner L, van den Ban ECD, Haaker HBCM, Liese A (2003) Practical applications of hydrogenase I from Pyrococcus furiosus for NADPH generation and regeneration. J Mol Catal B-enzym 24–25:39–52.  https://doi.org/10.1016/s1381-1177(03)00071-7 CrossRefGoogle Scholar
  84. 84.
    Mitarai N, Andersson AM, Krishna S, Semsey S, Sneppen K (2007) Efficient degradation and expression prioritization with small RNAs. Phys Biol 4:164–171.  https://doi.org/10.1088/1478-3975/4/3/003 PubMedCrossRefGoogle Scholar
  85. 85.
    Ng CY, Farasat I, Maranas CD, Salis HM (2015) Rational design of a synthetic Entner–Doudoroff pathway for improved and controllable NADPH regeneration. Metab Eng 29:86–96.  https://doi.org/10.1016/j.ymben.2015.03.001 PubMedCrossRefGoogle Scholar
  86. 86.
    Osada K, Maeda Y, Yoshino T, Nojima D, Bowler C, Tanaka T (2017) Enhanced NADPH production in the pentose phosphate pathway accelerates lipid accumulation in the oleaginous diatom Fistulifera solaris. Algal Res 23:126–134.  https://doi.org/10.1016/j.algal.2017.01.015 CrossRefGoogle Scholar
  87. 87.
    Papadimitriou K, Alegría Á, Bron PA, De AM, Gobbetti M, Kleerebezem M et al (2016) Stress physiology of lactic acid bacteria. Microbiol Mol Biol Rev 80:837–890.  https://doi.org/10.1128/MMBR.00076-15 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Park J, Choi Y (2017) Cofactor engineering in cyanobacteria to overcome imbalance between NADPH and NADH: a mini review. Front Chem Sci Eng 11:66–71.  https://doi.org/10.1007/s11705-016-1591-1 CrossRefGoogle Scholar
  89. 89.
    Park SH, Kim HU, Kim TY, Park JS, Kim SS, Lee SY (2014) Metabolic engineering of Corynebacterium glutamicum for l-arginine production. Nat Commun 5:4618.  https://doi.org/10.1038/ncomms5618 PubMedCrossRefGoogle Scholar
  90. 90.
    Paul CE, Gargiulo S, Opperman DJ, Lavandera I, Gotor-Fernández V, Gotor V, Taglieber A, Arends IW, Hollmann F (2013) Mimicking nature: synthetic nicotinamide cofactors for C=C bioreduction using enoate reductases. Org Lett 15:180–183.  https://doi.org/10.1021/ol303240a PubMedCrossRefGoogle Scholar
  91. 91.
    Petschacher B, Leitgeb S, Kavanagh KL, Wilson DK, Nidetzky B (2005) The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography. Biochem J 385:75–83.  https://doi.org/10.1042/BJ20040363 PubMedCrossRefGoogle Scholar
  92. 92.
    Petschacher B, Staunig N, Müller M, Schürmann M, Mink D, De Wildeman S, Gruber K, Glieder A (2014) Cofactor Specificity Engineering of Streptococcus mutans NADH oxidase 2 for NAD(P)(+) regeneration in biocatalytic oxidations. Comput Struct Biotechnol J 9:e201402005.  https://doi.org/10.5936/csbj.201402005 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Pick A, Ott W, Howe T, Schmid J, Sieber V (2014) Improving the NADH-cofactor specificity of the highly active AdhZ3 and AdhZ2 from Escherichia coli K-12. J Biotechnol 189:157–165.  https://doi.org/10.1016/j.jbiotec.2014.06.015 PubMedCrossRefGoogle Scholar
  94. 94.
    Pollak N, Dölle C, Ziegler M (2007) The power to reduce: pyridine nucleotides-small molecules with a multitude of functions. Biochem J 402:205–218.  https://doi.org/10.1042/BJ20061638 PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Rathnasingh C, Raj SM, Lee Y, Catherine C, Ashok S, Park S (2012) Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains. J Biotechnol 157:633–640.  https://doi.org/10.1016/j.jbiotec.2011.06.008 PubMedCrossRefGoogle Scholar
  96. 96.
    Relyea HA, van der Donk WA (2005) Mechanism and applications of phosphite dehydrogenase. Bioorg Chem 33:171–189.  https://doi.org/10.1016/j.bioorg.2005.01.003 PubMedCrossRefGoogle Scholar
  97. 97.
    Reynolds TS, Courtney CM, Erickson KE, Wolfe LM, Chatterjee A, Nagpal P, Gill RT (2017) ROS mediated selection for increased NADPH availability in Escherichia coli. Biotechnol Bioeng 114:2685–2689.  https://doi.org/10.1002/bit.26385 PubMedCrossRefGoogle Scholar
  98. 98.
    Romero S, Merino E, Bolivar F, Gosset G, Martinez A (2007) Metabolic engineering of Bacillus subtilis for ethanol production: lactate dehydrogenase plays a key role in fermentative metabolism. Appl Environ Microbiol 73:5190–5198.  https://doi.org/10.1128/AEM.00625-07 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Runguphan W, Keasling JD (2014) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab Eng 21:103–113.  https://doi.org/10.1016/j.ymben.2013.07.003 PubMedCrossRefGoogle Scholar
  100. 100.
    Rydzak T, Grigoryan M, Cunningham ZJ, Krokhin OV, Ezzati P, Cicek N, Levin DB, Wilkins JA, Sparling R (2014) Insights into electron flux through manipulation of fermentation conditions and assessment of protein expression profiles in Clostridium thermocellum. Appl Microbiol Biotechnol 98:6497–6510.  https://doi.org/10.1007/s00253-014-5798-0 PubMedCrossRefGoogle Scholar
  101. 101.
    Saini M, Hong CM, Chiang CJ, Chao YP (2015) Potential production platform of n-butanol in Escherichia coli. Metab Eng 27:76–82.  https://doi.org/10.1016/j.ymben.2014.11.001 PubMedCrossRefGoogle Scholar
  102. 102.
    Sakai Y, Murdanoto AP, Konishi T, Iwamatsu A, Kato N (1997) Regulation of the formate dehydrogenase gene, fdh1, in the methylotrophic yeast Candida boidinii and growth characteristics of an fdh1-disrupted strain on methanol, methylamine, and choline. J Bacteriol 179:4480–4485PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Sanchez AM, Andrews J, Hussein I, Bennett GN, San KY (2006) Effect of overexpression of a soluble pyridine nucleotide transhydrogenase (UdhA) on the production of poly(3-hydroxybutyrate) in Escherichia coli. Biotechnol Prog 22:420–425.  https://doi.org/10.1021/bp050375u PubMedCrossRefGoogle Scholar
  104. 104.
    Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E (2004) The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 279:6613–6619.  https://doi.org/10.1074/jbc.M311657200 PubMedCrossRefGoogle Scholar
  105. 105.
    Shi A, Zhu X, Lu J, Zhang X, Ma Y (2013) Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metab Eng 16:1–10.  https://doi.org/10.1016/j.ymben.2012.11.008 PubMedCrossRefGoogle Scholar
  106. 106.
    Song HS, Jeon JM, Kim HJ, Bhatia SK, Sathiyanarayanan G, Kim J, Won Hong J, Gi Hong Y, Young Choi K, Kim YG, Kim W, Yang YH (2017) Increase in furfural tolerance by combinatorial overexpression of NAD salvage pathway enzymes in engineered isobutanol-producing E. coli. Bioresour Technol 245:1430–1435.  https://doi.org/10.1016/j.biortech.2017.05.197 PubMedCrossRefGoogle Scholar
  107. 107.
    Spaans SK, Weusthuis RA, van der Oost J, Kengen SWM (2015) NADPH-generating systems in bacteria and archaea. Front Microbiol 6:742.  https://doi.org/10.3389/fmicb.2015.00742 PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Staudt S, Burda E, Giese C, Müller CA, Marienhagen J, Schwaneberg U, Hummel W, Drauz K, Gröger H (2013) Direct oxidation of cycloalkanes to cycloalkanones with oxygen in water. Angew Chem Int Ed Engl 52:2359–2363.  https://doi.org/10.1002/anie.201204464 PubMedCrossRefGoogle Scholar
  109. 109.
    Strand MK, Stuart GR, Longley MJ, Graziewicz MA, Dominick OC, Copeland WC (2003) POS5 gene of Saccharomyces cerevisiae encodes a mitochondrial NADH kinase required for stability of mitochondrial DNA. Eukaryot Cell 2:809–820PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Su L, Shen Y, Zhang W, Gao T, Shang Z, Wang M (2017) Cofactor engineering to regulate NAD+/NADH ratio with its application to phytosterols biotransformation. Microb Cell Fact 16:182.  https://doi.org/10.1186/s12934-017-0796-4 PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Sun JA, Zhang LY, Rao B, Shen YL, Wei DZ (2012) Enhanced acetoin production by Serratia marcescens H32 with expression of a water-forming NADH oxidase. Bioresour Technol 119:94–98.  https://doi.org/10.1016/j.biortech.2012.05.108 PubMedCrossRefGoogle Scholar
  112. 112.
    Sundara Sekar B, Seol E, Park S (2017) Co-production of hydrogen and ethanol from glucose in Escherichia coli by activation of pentose-phosphate pathway through deletion of phosphoglucose isomerase (pgi) and overexpression of glucose-6-phosphate dehydrogenase (zwf) and 6-phosphogluconate dehydrogenase (gnd). Biotechnol Biofuels 10:85.  https://doi.org/10.1186/s13068-017-0768-2 PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Takase R, Mikami B, Kawai S, Murata K, Hashimoto W (2014) Structure-based conversion of the coenzyme requirement of a short-chain dehydrogenase/reductase involved in bacterial alginate metabolism. J Biol Chem 289:33198–33214.  https://doi.org/10.1074/jbc.M114.585661 PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Thompson RA, Layton DS, Guss AM, Olson DG, Lynd LR, Trinh CT (2015) Elucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum. Metab Eng 32:207–219.  https://doi.org/10.1016/j.ymben.2015.10.004 PubMedCrossRefGoogle Scholar
  115. 115.
    Tribelli PM, Nikel PI, Oppezzo OJ, Lopez NI (2013) Anr, the anaerobic global regulator, modulates the redox state and oxidative stress resistance in Pseudomonas extremaustralis. Microbiology 159:259–268.  https://doi.org/10.1099/mic.0.061085-0 PubMedCrossRefGoogle Scholar
  116. 116.
    Vrtis JM, White AK, Metcalf WW, van der Donk WA (2002) Phosphite dehydrogenase: a versatile cofactor-regeneration enzyme. Angew Chem Int Ed Engl 41:3257–3259. https://doi.org/10.1002/1521-3773(20020902)41:17<3257:AID-ANIE3257>3.0.CO;2-NGoogle Scholar
  117. 117.
    Wang E, Bauer MC, Rogstam A, Linse S, Logan DT, Wachenfeldt CV (2008) Structure and functional properties of the Bacillus subtilis transcriptional repressor Rex. Mol Microbiol 69:466–478.  https://doi.org/10.1111/j.1365-2958.2008.06295.x PubMedCrossRefGoogle Scholar
  118. 118.
    Wang M, Chen B, Fang Y, Tan T (2017) Cofactor engineering for more efficient production of chemicals and biofuels. Biotechnol Adv 35:1032–1039.  https://doi.org/10.1016/j.biotechadv.2017.09.008 PubMedCrossRefGoogle Scholar
  119. 119.
    Wang M, Hu L, Fan L, Tan T (2015) Enhanced 1-butanol production in engineered Klebsiella pneumonia by NADH regeneration. Energy Fuel 29:1823–1829.  https://doi.org/10.1021/acs.energyfuels.5b00009 CrossRefGoogle Scholar
  120. 120.
    Wang M, Wang G, Zhang T, Fan L, Tan T (2016) Multi-modular engineering of 1,3-propanediol biosynthesis system in Klebsiella pneumoniae from co-substrate. Appl Microbiol Biotechnol 101:647–657.  https://doi.org/10.1007/s00253-016-7919-4 PubMedCrossRefGoogle Scholar
  121. 121.
    Wang M, Zhou Y, Tan T (2017) Cofactor engineering for enhanced production of diols by Klebsiella pneumoniae from co-substrate. Biotechnol J.  https://doi.org/10.1002/biot.201700176 CrossRefPubMedGoogle Scholar
  122. 122.
    Wang P, Yang X, Lin B, Huang J, Tao Y (2017) Cofactor self-sufficient whole-cell biocatalysts for the production of 2-phenylethanol. Metab Eng 44:143–149.  https://doi.org/10.1016/j.ymben.2017.09.013 PubMedCrossRefGoogle Scholar
  123. 123.
    Wang X, Zhou YJ, Wang L, Liu W, Liu Y, Peng C, Zhao ZK (2017) Engineering Escherichia coli nicotinic acid mononucleotide adenylyltransferase for fully active amidated NAD biosynthesis. Appl Environ Microbiol 83:e00692-17.  https://doi.org/10.1128/AEM.00692-17 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Wang Y, Li LX, Ma CQ, Gao C, Tao F, Xu P (2013) Engineering of cofactor regeneration enhances (2S,3S)-2,3-butanediol production from diacetyl. Sci Rep 3:2643.  https://doi.org/10.1038/srep02643 PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Wang Y, San KY, Bennett GN (2013) Cofactor engineering for advancing chemical biotechnology. Curr Opin Biotechnol 24:994–999.  https://doi.org/10.1016/j.copbio.2013.03.022 PubMedCrossRefGoogle Scholar
  126. 126.
    Wang Y, San KY, Bennett GN (2013) Improvement of NADPH bioavailability in Escherichia coli by replacing NAD(+)-dependent glyceraldehyde-3-phosphate dehydrogenase GapA with NADP (+)-dependent GapB from Bacillus subtilis and addition of NAD kinase. J Ind Microbiol Biotechnol 40:1449–1460.  https://doi.org/10.1007/s10295-013-1335-x PubMedCrossRefGoogle Scholar
  127. 127.
    Watanabe S, Abu Saleh A, Pack SP, Annaluru N, Kodaki T, Makino K (2007) Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology 153:3044–3054.  https://doi.org/10.1099/mic.0.2007/007856-0 PubMedCrossRefGoogle Scholar
  128. 128.
    Watanabe S, Saleh AA, Pack SP, Annaluru N, Kodaki T, Makino K (2007) Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase. J Biotechnol 130:316–319.  https://doi.org/10.1016/j.jbiotec.2007.04.019 PubMedCrossRefGoogle Scholar
  129. 129.
    Wei N, Quarterman J, Kim SR, Cate JH, Jin YS (2013) Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast. Nat Commun 4:2580.  https://doi.org/10.1038/ncomms3580 PubMedCrossRefGoogle Scholar
  130. 130.
    Wen Z, Minton NP, Ying Z, Qi L, Liu J, Jiang Y, Yang S (2016) Enhanced solvent production by metabolic engineering of a twin-clostridial consortium. Metab Eng 39:38–48.  https://doi.org/10.1016/j.ymben.2016.10.013 PubMedCrossRefGoogle Scholar
  131. 131.
    Woodyer R, Wa VDD, Zhao H (2003) Relaxing the nicotinamide cofactor specificity of phosphite dehydrogenase by rational design. Biochemistry 42:11604–11614.  https://doi.org/10.1021/bi035018b PubMedCrossRefGoogle Scholar
  132. 132.
    Woodyer R, van der Donk WA, Zhao H (2006) Optimizing a biocatalyst for improved NAD(P)H regeneration: directed evolution of phosphite dehydrogenase. Comb Chem High Throughput Screen 9:237–245.  https://doi.org/10.2174/138620706776843246 PubMedCrossRefGoogle Scholar
  133. 133.
    Yamauchi Y, Hirasawa T, Nishii M, Furusawa C, Shimizu H (2014) Enhanced acetic acid and succinic acid production under microaerobic conditions by Corynebacterium glutamicum harboring Escherichia coli transhydrogenase gene pntAB. J Gen Appl Microbiol 60:112–118.  https://doi.org/10.2323/jgam.60.112 PubMedCrossRefGoogle Scholar
  134. 134.
    Yang T, Rao Z, Hu G, Zhang X, Liu M, Dai Y, Xu M, Xu Z, Yang S (2015) Metabolic engineering of Bacillus subtilis for redistributing the carbon flux to 2,3-butanediol by manipulating NADH levels. Biotechnol Biofuels 8:129.  https://doi.org/10.1186/s13068-015-0320-1 PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Zhang GC, Liu JJ, Ding WT (2012) Decreased xylitol formation during xylose fermentation in Saccharomyces cerevisiae due to overexpression of water-forming NADH oxidase. Appl Environ Microbiol 78:1081–1086.  https://doi.org/10.1128/AEM.06635-11 PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Zhang GC, Turner TL, Jin YS (2017) Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums. J Ind Microbiol Biotechnol 44:387–395.  https://doi.org/10.1007/s10295-016-1899-3 PubMedCrossRefGoogle Scholar
  137. 137.
    Zhang J, Gao X, Hong PH, Li ZJ, Tan TW (2015) Enhanced production of poly-3-hydroxybutyrate by Escherichia coli, over-expressing multiple copies of NAD kinase integrated in the host genome. Biotechnol Lett 37:1273–1278.  https://doi.org/10.1007/s10529-015-1797-1 PubMedCrossRefGoogle Scholar
  138. 138.
    Zhang J, Sonnenschein N, Pihl TP, Pedersen KR, Jensen MK, Keasling JD (2016) Engineering an NADPH/NADP(+) redox biosensor in yeast. ACS synth biol 5:1546–1556.  https://doi.org/10.1021/acssynbio.6b00135 PubMedCrossRefGoogle Scholar
  139. 139.
    Zhang L, Nie X, Ravcheev DA, Rodionov DA, Sheng J, Gu Y, Yang S, Jiang W, Yang C (2014) Redox-responsive repressor Rex modulates alcohol production and oxidative stress tolerance in Clostridium acetobutylicum. J Bacteriol 196:949–3963.  https://doi.org/10.1128/JB.02037-14 CrossRefGoogle Scholar
  140. 140.
    Zhang L, Yuan J, Xu Y, Zhang YP, Qian X (2016) New artificial fluoro-cofactor of hydride transfer with novel fluorescence assay for redox biocatalysis. Chem Commun 52:6471–6474.  https://doi.org/10.1039/c6cc02002j CrossRefGoogle Scholar
  141. 141.
    Zhang Y, Gao F, Zhang SP, Su ZG, Ma GH, Wang P (2011) Simultaneous production of 1,3-dihydroxyacetone and xylitol from glycerol and xylose using a nanoparticle-supported multi-enzyme system with in situ cofactor regeneration. Bioresour Technol 102:1837–1843.  https://doi.org/10.1016/j.biortech.2010.09.069 PubMedCrossRefGoogle Scholar
  142. 142.
    Zhang Y, Huang Z, Du C, Li Y, Cao Z (2009) Introduction of an NADH regeneration system into Klebsiella oxytoca leads to an enhanced oxidative and reductive metabolism of glycerol. Metab Eng 11:101–106.  https://doi.org/10.1016/j.ymben.2008.11.001 PubMedCrossRefGoogle Scholar
  143. 143.
    Zhang Y, Li Y, Du C, Liu M, Cao Z (2006) Inactivation of aldehyde dehydrogenase: a key factor for engineering 1,3-propanediol production by Klebsiella pneumoniae. Metab Eng 8:578–586.  https://doi.org/10.1016/j.ymben.2006.05.008 PubMedCrossRefGoogle Scholar
  144. 144.
    Zhao C, Zhao Q, Yin L, Zhang Y (2017) Engineering redox homeostasis to develop efficient alcohol-producing microbial cell factories. Microb Cell Fact 16:115.  https://doi.org/10.1186/s12934-017-0728-3 PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Zheng Y, Yuan Q, Yang X, Ma H (2017) Engineering Escherichia coli for poly-(3-hydroxybutyrate) production guided by genome-scale metabolic network analysis. Enzyme Microb Technol 106:60–66.  https://doi.org/10.1016/j.enzmictec.2017.07.003 PubMedCrossRefGoogle Scholar
  146. 146.
    Zhu C, Li Q, Pu L, Tan Z, Guo K, Ying H, Ouyang P (2016) Nonenzymatic and metal-free organocatalysis for in situ regeneration of oxidized cofactors by activation and reduction of molecular oxygen. ACS Catal 6:4989–4994.  https://doi.org/10.1021/acscatal.6b01261 CrossRefGoogle Scholar
  147. 147.
    Zou Y, Zhang H, Brunzelle JS, Johannes TW, Woodyer R, Hung JE, Nair N, van der Donk WA, Zhao H, Nair SK (2012) Crystal structures of phosphite dehydrogenase provide insights into nicotinamide cofactor regeneration. Biochemistry 51:4263–4270.  https://doi.org/10.1021/bi2016926 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2018

Authors and Affiliations

  • Jiaheng Liu
    • 1
    • 2
    • 3
  • Huiling Li
    • 1
    • 2
    • 3
  • Guangrong Zhao
    • 1
    • 2
    • 3
  • Qinggele Caiyin
    • 1
    • 2
  • Jianjun Qiao
    • 1
    • 2
    • 3
  1. 1.Key Laboratory of Systems Bioengineering (Ministry of Education)Tianjin UniversityTianjinPeople’s Republic of China
  2. 2.School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China
  3. 3.SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)TianjinPeople’s Republic of China

Personalised recommendations