Potential of biogenic methane for pilot-scale fermentation ex situ with lump anthracite and the changes of methanogenic consortia

  • Xiuqing Yang
  • Yanmei Chen
  • Ruiwei Wu
  • Zhiqiang Nie
  • Zuoying Han
  • Kaili Tan
  • Linyong Chen
Environmental Microbiology - Original paper


Pilot-scale fermentation is one of the important processes for achieving industrialization of biogenic coalbed methane (CBM), although the mechanism of biogenic CBM remains unknown. In this study, 16 samples of formation water from CBM production wells were collected and enriched for methane production, and the methane content was between 3.1 and 21.4%. The formation water of maximum methane production was used as inoculum source for pilot-scale fermentation. The maximum methane yield of the pilot-scale fermentation with lump anthracite amendment reached 13.66 μmol CH4/mL, suggesting that indigenous microorganisms from formation water degraded coal to produce methane. Illumina high-throughput sequencing analysis revealed that the bacterial and archaeal communities in the formation water sample differed greatly from the methanogic water enrichment culture. The hydrogenotrophic methanogen Methanocalculus dominated the formation water. Acetoclastic methanogens, from the order Methanosarcinales, dominated coal bioconversion. Thus, the biogenic methanogenic pathway ex situ cannot be simply identified according to methanogenic archaea in the original inoculum. Importantly, this study was the first time to successfully simulate methanogenesis in large-capacity fermentors (160 L) with lump anthracite amendment, and the result was also a realistic case for methane generation in pilot-scale ex situ.


Biogenic methane Lump anthracite Microbial community Pilot-scale fermentation Qinshui Basin 



This work was supported by the Natural Science and CBM Joint Foundation of Shanxi (2015012002) and the Key Scientific and Technological Project of Shanxi (MQ2014-03). We are very grateful to the staff of Yi’an Lanyan Coal and Coalbed Methane Simultaneous Extraction Technology Co., Ltd., for facilitating the sample collection.


  1. 1.
    Bao Y, Wei C, Neupane B (2016) Generation and accumulation characteristics of mixed coalbed methane controlled by tectonic evolution in Liulin CBM field, eastern Ordos basin, China. J Nat Gas Sci Eng 28:262–270CrossRefGoogle Scholar
  2. 2.
    Beckmann S, Lueders T, Krueger M et al (2011) Acetogens and acetoclastic methanosarcinales govern methane formation in abandoned coal mines. Appl Environ Microbiol 77:3749–3756CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bumpus JA, Senko J, Lynd G, Morgan R, Sturm K, Stimpson J et al (1998) Biomimetic solubilization of a low rank coal: implications for its use in methane production. Energy Fuels 12:664–671CrossRefGoogle Scholar
  4. 4.
    Chen SY, Dong XZ (2005) Proteiniphilum acetatigenes gen. nov., sp nov., from a UASB reactor treating brewery wastewater. Int J Syst Evol Microbiol 55:2257–2261CrossRefPubMedGoogle Scholar
  5. 5.
    Colosimo F, Thomas R, Lloyd JR et al (2016) Biogenic methane in shale gas and coal bed methane: a review of current knowledge and gaps. Int J Coal Geol 165:106–120CrossRefGoogle Scholar
  6. 6.
    Delong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Duhaime MB, Deng L, Poulos BT, Sullivan MB (2012) Towards quantitative metagenomics of wild viruses and other ultra-low concentration DNA samples: a rigorous assessment and optimization of the linker amplification method. Environ Microbiol 14:2526–2537CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fallgren PH, Jin S, Zeng C, Ren Z, Lu A, Colberg PJS (2013) Comparison of coal rank for enhanced biogenic natural gas production. Int J Coal Geol 115:92–96CrossRefGoogle Scholar
  9. 9.
    Green MS, Flanegan KC, Gilcrease PC (2008) Characterization of a methanogenic consortium enriched from a coalbed methane well in the Powder River Basin, U.S.A. Int J Coal Geol 76:34–45CrossRefGoogle Scholar
  10. 10.
    Guo H, Yu Z, Thompson IP, Zhang H (2014) A contribution of hydrogenotrophic methanogenesis to the biogenic coal bed methane reserves of Southern Qinshui Basin, China. Appl Microbiol Biotechnol 98:9083–9093CrossRefPubMedGoogle Scholar
  11. 11.
    Guo H, Yu Z, Liu R, Zhang H, Zhong Q, Xiong Z (2012) Methylotrophic methanogenesis governs the biogenic coal bed methane formation in Eastern Ordos Basin, China. Appl Microbiol Biotechnol 96:1587–1597CrossRefPubMedGoogle Scholar
  12. 12.
    Gupta P, Gupta A (2014) Biogas production from coal via anaerobic fermentation. Fuel 118:238–242CrossRefGoogle Scholar
  13. 13.
    Han C, Kotsyurbenko O, Chertkov O et al (2012) Complete genome sequence of the sulfur compounds oxidizing chemolithoautotroph Sulfuricurvum kujiense type strain (YK-1(T)). Stand Genom Sci 6:94–103CrossRefGoogle Scholar
  14. 14.
    Jin S, Craig RH (2012) System and method for enhancing coal bed methane recovery. US, US 20120043084Google Scholar
  15. 15.
    Kalyuzhnaya MG, Bowerman S, Lara JC, Lidstrom ME, Chistoserdova L (2006) Methylotenera mobilis gen. nov., sp nov., an obligately methylamine-utilizing bacterium within the family Methylophilaceae. Int J Syst Evol Microbiol 56:2819–2823CrossRefPubMedGoogle Scholar
  16. 16.
    Kalyuzhnaya MG, Khmelenina VN, Kotelnikova S, Holmquist L, Pedersen K, Trotsenko YA (1999) Methylomonas scandinavica sp.nov., a newmethanotrophic psychrotrophic bacterium isolated from deep igneous rock ground water of Sweden. Syst Appl Microbiol 22:565–572CrossRefPubMedGoogle Scholar
  17. 17.
    Kalyuzhnaya MG, Khmelenina VN, Starostina NG et al (1998) A new moderately halophilic methanotroph of the genus Methylobacter. Microbiology 67:438–444Google Scholar
  18. 18.
    Kimura H, Nashimoto H, Shimizu M et al (2010) Microbial methane production in deep aquifer associated with the accretionary prism in Southwest Japan. ISME J 4:531–541CrossRefPubMedGoogle Scholar
  19. 19.
    Lu JL, Li SC (2015) Study on enrichment controlling geological factors of CBM Reservoir in Sihe Mine. Zhongzhou Coal 239:118–121 (in Chinese) Google Scholar
  20. 20.
    Lv Y, Tang D, Xu H, Luo H (2012) Production characteristics and the key factors in high-rank coalbed methane fields: a case study on Fanzhuang Block, Southern Qinshui Basin, China. Int J Coal Geol 96:93–108CrossRefGoogle Scholar
  21. 21.
    Mcglade C, Speirs J, Sorrell S (2013) Unconventional gas—a review of regional and global resource estimates. Energy 55:571–584CrossRefGoogle Scholar
  22. 22.
    Midgley DJ, Hendry P, Pinetown KL, Fuentes D, Gong S, Mitchell DL, Faiz M (2010) Characterisation of a microbial community associated with a deep, coal seam methane reservoir in the Gippsland Basin, Australia. Int J Coal Geol 82:232–239CrossRefGoogle Scholar
  23. 23.
    Papendick SL, Downs KR, Vo KD et al (2011) Biogenic methane potential for Surat Basin, Queensland coal seams. Int J Coal Geol 88:123–134CrossRefGoogle Scholar
  24. 24.
    Park SY, Liang Y (2016) Biogenic methane production from coal: a review on recent research and development on microbially enhanced coalbed methane (MECBM). Fuel 166:258–267CrossRefGoogle Scholar
  25. 25.
    Penner TJ, Foght JM, Budwill K (2010) Microbial diversity of western Canadian subsurface coal beds and methanogenic coal enrichment cultures. Int J Coal Geol 82:81–93CrossRefGoogle Scholar
  26. 26.
    Robbins SJ, Evans PN, Esterle JS, Golding SD, Tyson GW (2016) The effect of coal rank on biogenic methane potential and microbial composition. Int J Coal Geol 154–155:205–212CrossRefGoogle Scholar
  27. 27.
    Rockne KJ, Chee-Sanford JC, Sanford RA et al (2000) Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions. Appl Environ Microbiol 66:1595–1601CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Springer E, Sachs MS, Woese CR, Boone DR (1995) Partial gene sequences for the A subunit of methyl-coenzyme M reductase (mcrI) as a phylogenetic tool for the family Methanosarcinaceae. Int J Syst Bacteriol 45:554–559CrossRefPubMedGoogle Scholar
  30. 30.
    Strapoc D, Mastalerz M, Dawson K et al (2011) Biogeochemistry of microbial coal-bed methane. Annu Rev Earth Planet Sci 39:617–656CrossRefGoogle Scholar
  31. 31.
    Strapoc D, Picardal FW, Turich C et al (2008) Methane-producing microbial community in a coal bed of the Illinois basin. Appl Environ Microbiol 74:2424–2432CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Susilawati R, Evans PN, Esterle JS, Robbins SJ, Tyson GW, Golding SD, Mares TE (2015) Temporal changes in microbial community composition during culture enrichment experiments with Indonesian coals. Int J Coal Geol 137:66–76CrossRefGoogle Scholar
  33. 33.
    Susilawati R, Papendick SL, Gilcrease PC, Esterle JS, Golding SD, Mares TE (2013) Preliminary investigation of biogenic gas production in Indonesian low rank coals and implications for a renewable energy source. J Asian Earth Sci 77:234–242CrossRefGoogle Scholar
  34. 34.
    Tan KL, Song YL, Zhao N (2017) Experimental study on the degradation of different ranks of coal and methane gas production by exogenous bacteria. Coal Chem Ind 45:12–14 (in Chinese) Google Scholar
  35. 35.
    Unal B, Perry VR, Sheth M et al (2012) Trace elements affect methanogenic activity and diversity in enrichments from subsurface coal bed produced water. Front Microbiol 3:175CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wang B, Tai C, Wu L, Chen L, Liu JM, Hu B et al (2017) Methane production from lignite through the combined effects of exogenous aerobic and anaerobic microflora. Int J Coal Geol 173:84–93CrossRefGoogle Scholar
  37. 37.
    Wei M, Qiu Q, Qian Y, Cheng L, Guo A (2016) Methane oxidation and response of Methylobacter/Methylosarcina methanotrophs in flooded rice soil amended with urea. Appl Soil Ecol 101:174–184CrossRefGoogle Scholar
  38. 38.
    Yoon KS, Tsukada N, Sakai Y, Ishii M, Igarashi Y, Nishihara H (2008) Isolation and characterization of a new facultatively autotrophic hydrogen-oxidizing Betaproteobacterium, Hydrogenophaga sp AH-24. FEMS Microbiol Lett 278:94–100CrossRefPubMedGoogle Scholar
  39. 39.
    Zhang J, Park SY, Liang Y, Harpalani S (2016) Finding cost-effective nutrient solutions and evaluating environmental conditions for biogasifying bituminous coal to methane ex situ. Appl Energy 165:559–568CrossRefGoogle Scholar
  40. 40.
    Zhang J, Liang Y, Pandey R, Harpalani S (2015) Characterizing microbial communities dedicated for conversion of coal to methane in situ and ex situ. Int J Coal Geol 146:145–154CrossRefGoogle Scholar
  41. 41.
    Zhilina TN, Zavarzina DG, Kevbrin VV, Kolganova TV (2013) Methanocalculus natronophilus sp nov., a new alkaliphilic hydrogenotrophic methanogenic archaeon from a soda lake, and proposal of the new family Methanocalculaceae. Microbiology 82:698–706CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2018

Authors and Affiliations

  • Xiuqing Yang
    • 1
  • Yanmei Chen
    • 1
  • Ruiwei Wu
    • 1
  • Zhiqiang Nie
    • 1
  • Zuoying Han
    • 2
    • 3
  • Kaili Tan
    • 2
    • 3
  • Linyong Chen
    • 2
    • 3
  1. 1.Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of BiotechnologyShanxi UniversityTaiyuanChina
  2. 2.State Key Laboratory of Coal and Coalbed Methane Co-miningJinchengChina
  3. 3.Yi’an Lanyan Coal and Coalbed Methane Simultaneous Extraction Technology Co., LtdJinchengChina

Personalised recommendations