Skip to main content
Log in

Synthetic biology of polyketide synthases

  • Metabolic Engineering and Synthetic Biology - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Complex reduced polyketides represent the largest class of natural products that have applications in medicine, agriculture, and animal health. This structurally diverse class of compounds shares a common methodology of biosynthesis employing modular enzyme systems called polyketide synthases (PKSs). The modules are composed of enzymatic domains that share sequence and functional similarity across all known PKSs. We have used the nomenclature of synthetic biology to classify the enzymatic domains and modules as parts and devices, respectively, and have generated detailed lists of both. In addition, we describe the chassis (hosts) that are used to assemble, express, and engineer the parts and devices to produce polyketides. We describe a recently developed software tool to design PKS system and provide an example of its use. Finally, we provide perspectives of what needs to be accomplished to fully realize the potential that synthetic biology approaches bring to this class of molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bai C, Zhang Y, Zhao X, Hu Y, Xiang S, Miao J, Lou C, Zhang L (2015) Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products in Streptomyces. Proc Natl Acad Sci USA 112:12181–12186. https://doi.org/10.1073/pnas.1511027112

    Article  PubMed  CAS  Google Scholar 

  2. Baltz RH (2010) Streptomyces and Saccharopolyspora hosts for heterologous expression of secondary metabolite gene clusters. J Ind Microbiol Biotechnol 37:759–772. https://doi.org/10.1007/s10295-010-0730-9

    Article  PubMed  CAS  Google Scholar 

  3. Barajas JF, Blake-Hedges JM, Bailey CB, Curran S, Keasling JD (2017) Engineered polyketides: synergy between protein and host level engineering. Synth Syst Biotechnol 2:147–166. https://doi.org/10.1016/j.synbio.2017.08.005

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bayly CL, Yadav VG (2017) Towards precision engineering of canonical polyketide synthase domains: recent advances and future prospects. Molecules. https://doi.org/10.3390/molecules22020235

    Article  PubMed  Google Scholar 

  5. Beld J, Lee DJ, Burkart MD (2015) Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering. Mol BioSyst 11:38–59. https://doi.org/10.1039/c4mb00443d

    Article  PubMed  CAS  Google Scholar 

  6. Brautaset T, Sekurova ON, Sletta H, Ellingsen TE, StrLm AR, Valla S, Zotchev SB (2000) Biosynthesis of the polyene antifungal antibiotic nystatin in Streptomyces noursei ATCC 11455: analysis of the gene cluster and deduction of the biosynthetic pathway. Chem Biol 7:395–403

    Article  PubMed  CAS  Google Scholar 

  7. Chang Z, Sitachitta N, Rossi JV, Roberts MA, Flatt PM, Jia J, Sherman DH, Gerwick WH (2004) Biosynthetic pathway and gene cluster analysis of curacin A, an antitubulin natural product from the tropical marine cyanobacterium Lyngbya majuscula. J Nat Prod 67:1356–1367. https://doi.org/10.1021/np0499261

    Article  PubMed  CAS  Google Scholar 

  8. Chen AY, Schnarr NA, Kim CY, Cane DE, Khosla C (2006) Extender unit and acyl carrier protein specificity of ketosynthase domains of the 6-deoxyerythronolide B synthase. J Am Chem Soc 128:3067–3074. https://doi.org/10.1021/ja058093d

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Du L, Lou L (2010) PKS and NRPS release mechanisms. Nat Prod Rep 27:255–278. https://doi.org/10.1039/b912037h

    Article  PubMed  CAS  Google Scholar 

  10. Dutton CJ, Gibson SP, Goudie AC, Holdom KS, Pacey MS, Ruddock JC, Bu’Lock JD, Richards MK (1991) Novel avermectins produced by mutational biosynthesis. J Antibiot (Tokyo) 44:357–365

    Article  CAS  Google Scholar 

  11. Eng CH, Backman TWH, Bailey CB, Magnan C, Garcia Martin H, Katz L, Baldi P, Keasling JD (2017) ClusterCAD: a computational platform for type I modular polyketide synthase design. Nucleic Acids Res. https://doi.org/10.1093/nar/gkx893

    Article  PubMed Central  Google Scholar 

  12. Eng CH, Yuzawa S, Wang G, Baidoo EE, Katz L, Keasling JD (2016) Alteration of polyketide stereochemistry from anti to syn by a ketoreductase domain exchange in a Type I modular polyketide synthase subunit. Biochemistry 55:1677–1680. https://doi.org/10.1021/acs.biochem.6b00129

    Article  PubMed  CAS  Google Scholar 

  13. Gokhale RS (1999) Dissecting and exploiting intermodular communication in polyketide synthases. Science 284:482–485. https://doi.org/10.1126/science.284.5413.482

    Article  PubMed  CAS  Google Scholar 

  14. Gomez-Escribano JP, Song L, Fox DJ, Yeo V, Bibb MJ, Challis GL (2012) Structure and biosynthesis of the unusual polyketide alkaloid coelimycin P1, a metabolic product of the cpk gene cluster of Streptomyces coelicolor M145. Chem Sci 3:2716. https://doi.org/10.1039/c2sc20410j

    Article  CAS  Google Scholar 

  15. Hagen A, Poust S, de Rond T, Yuzawa S, Katz L, Adams PD, Petzold CJ, Keasling JD (2014) In vitro analysis of carboxyacyl substrate tolerance in the loading and first extension modules of borrelidin polyketide synthase. Biochemistry 53:5975–5977. https://doi.org/10.1021/bi500951c

    Article  PubMed  CAS  Google Scholar 

  16. Hagen A, Poust S, Rond T, Fortman JL, Katz L, Petzold CJ, Keasling JD (2016) Engineering a polyketide synthase for in vitro production of adipic acid. ACS Synth Biol 5:21–27. https://doi.org/10.1021/acssynbio.5b00153

    Article  PubMed  CAS  Google Scholar 

  17. Helfrich EJ, Piel J (2016) Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod Rep 33:231–316. https://doi.org/10.1039/c5np00125k

    Article  PubMed  CAS  Google Scholar 

  18. Ikeda H, Nonomiya T, Usami M, Ohta T, Omura S (1999) Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Proc Natl Acad Sci USA 96:9509–9514

    Article  PubMed  CAS  Google Scholar 

  19. Jiang H, Wang YY, Guo YY, Shen JJ, Zhang XS, Luo HD, Ren NN, Jiang XH, Li YQ (2015) An acyltransferase domain of FK506 polyketide synthase recognizing both an acyl carrier protein and coenzyme A as acyl donors to transfer allylmalonyl and ethylmalonyl units. FEBS J 282:2527–2539. https://doi.org/10.1111/febs.13296

    Article  PubMed  CAS  Google Scholar 

  20. Keatinge-Clay AT (2016) Stereocontrol within polyketide assembly lines. Nat Prod Rep 33:141–149. https://doi.org/10.1039/c5np00092k

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Keatinge-Clay AT (2017) The uncommon enzymology of cis-acyltransferase assembly lines. Chem Rev 117:5334–5366. https://doi.org/10.1021/acs.chemrev.6b00683

    Article  PubMed  CAS  Google Scholar 

  22. Khosla C, Tang Y, Chen AY, Schnarr NA, Cane DE (2007) Structure and mechanism of the 6-deoxyerythronolide B synthase. Annu Rev Biochem 76:195–221. https://doi.org/10.1146/annurev.biochem.76.053105.093515

    Article  PubMed  CAS  Google Scholar 

  23. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich, UK

    Google Scholar 

  24. Klaus M, Ostrowski MP, Austerjost J, Robbins T, Lowry B, Cane DE, Khosla C (2016) Protein–protein interactions, not substrate recognition, dominate the turnover of chimeric assembly line polyketide synthases. J Biol Chem 291:16404–16415. https://doi.org/10.1074/jbc.M116.730531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kwan DH, Leadlay PF (2010) Mutagenesis of a modular polyketide synthase enoylreductase domain reveals insights into catalysis and stereospecificity. ACS Chem Biol 5:829–838. https://doi.org/10.1021/cb100175a

    Article  PubMed  CAS  Google Scholar 

  26. Liu Z, Liang Y, Ang EL, Zhao H (2017) A new era of genome integration-simply cut and paste! ACS Synth Biol 6:601–609. https://doi.org/10.1021/acssynbio.6b00331

    Article  PubMed  CAS  Google Scholar 

  27. Marsden AFA, Caffrey P, Aparicio JF, Loughran MS, Staunton J, Leadlay PF (1994) Stereospecific acyl transfers on the erythromycin-producing polyketide synthase. Science 263:378–380. https://doi.org/10.1126/science.8278811

    Article  PubMed  CAS  Google Scholar 

  28. McDaniel R, Thamchaipenet A, Gustafsson C, Fu H, Betlach M, Betlach M, Ashley G (1999) Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel ‘‘unnatural’’ natural products. Proc Natl Acad Sci USA 96:1846–1851

    Article  PubMed  CAS  Google Scholar 

  29. Menzella HG, Carney JR, Santi DV (2007) Rational design and assembly of synthetic trimodular polyketide synthases. Chem Biol 14:143–151. https://doi.org/10.1016/j.chembiol.2006.12.002

    Article  PubMed  CAS  Google Scholar 

  30. Menzella HG, Reid R, Carney JR, Chandran SS, Reisinger SJ, Patel KG, Hopwood DA, Santi DV (2005) Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nat Biotechnol 23:1171–1176. https://doi.org/10.1038/nbt1128

    Article  PubMed  CAS  Google Scholar 

  31. Moore BS, Hertweck C (2002) Biosynthesis and attachment of novel bacterial polyketide synthase starter units. Nat Prod Rep 19:70–99. https://doi.org/10.1039/b003939j

    Article  PubMed  CAS  Google Scholar 

  32. Motamedi H, Shafiee A (1998) The biosynthetic gene cluster for the macrolactone ring of the immunosuppressant FK506. Eur J Biochem 256:528–534

    Article  PubMed  CAS  Google Scholar 

  33. Murphy AC, Hong H, Vance S, Broadhurst RW, Leadlay PF (2016) Broadening substrate specificity of a chain-extending ketosynthase through a single active-site mutation. Chem Commun 52:8373–8376. https://doi.org/10.1039/c6cc03501a

    Article  CAS  Google Scholar 

  34. Oliynyk M, Stark CBW, Bhatt A, Jones MA, Hughes-Thomas ZA, Wilkinson C, Oliynyk Z, Demydchuk Y, Staunton J, Leadlay PF (2003) Analysis of the biosynthetic gene cluster for the polyether antibiotic monensin in Streptomyces cinnamonensis and evidence for the role of monB and monC genes in oxidative cyclization. Mol Microbiol 49:1179–1190. https://doi.org/10.1046/j.1365-2958.2003.03571.x

    Article  PubMed  CAS  Google Scholar 

  35. Patel K, Piagentini M, Rascher A, Tian ZQ, Buchanan GO, Regentin R, Hu Z, Hutchinson CR, McDaniel R (2004) Engineered biosynthesis of geldanamycin analogs for Hsp90 inhibition. Chem Biol 11:1625–1633. https://doi.org/10.1016/j.chembiol.2004.09.012

    Article  PubMed  CAS  Google Scholar 

  36. Phelan RM, Sachs D, Petkiewicz SJ, Barajas JF, Blake-Hedges JM, Thompson MG, Reider Apel A, Rasor BJ, Katz L, Keasling JD (2017) Development of next generation synthetic biology tools for use in Streptomyces venezuelae. ACS Synth Biol 6:159–166. https://doi.org/10.1021/acssynbio.6b00202

    Article  PubMed  CAS  Google Scholar 

  37. Poust S, Phelan RM, Deng K, Katz L, Petzold CJ, Keasling JD (2015) Divergent mechanistic routes for the formation of gem-dimethyl groups in the biosynthesis of complex polyketides. Angew Chem Int Ed Engl 54:2370–2373. https://doi.org/10.1002/anie.201410124

    Article  PubMed  CAS  Google Scholar 

  38. Robbins T, Liu YC, Cane DE, Khosla C (2016) Structure and mechanism of assembly line polyketide synthases. Curr Opin Struct Biol 41:10–18. https://doi.org/10.1016/j.sbi.2016.05.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Schwecke T, Aparicio JF, Molnar I, Konig A, Khaw LE, Haydock SF, Oliynyk M, Caffrey P, Cortes J, Lester JB et al (1995) The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin. Proc Natl Acad Sci USA 92:7839–7843

    Article  PubMed  CAS  Google Scholar 

  40. Silakowski B, Nordsiek G, Kunze B, Blocker H, Muller R (2001) Novel features in a combined polyketide synthase/non-ribosomal peptide synthetase: the myxalamid biosynthetic gene cluster of the myxobacterium Stigmatella aurantiaca Sga15. Chem Biol 8:59–69. https://doi.org/10.1016/S1074-5521(00)00056-9

    Article  PubMed  CAS  Google Scholar 

  41. Staunton J, Caffrey P, Aparicio JF, Roberts GA, Bethell SS, Leadlay PF (1996) Evidence for a double-helical structure for modular polyketide synthases. Nat Struct Biol 3:188–192

    Article  PubMed  CAS  Google Scholar 

  42. Sun Y, Zhou X, Dong H, Tu G, Wang M, Wang B, Deng Z (2003) A complete gene cluster from Streptomyces nanchangensis NS3226 encoding biosynthesis of the polyether ionophore nanchangmycin. Chem Biol 10:431–441. https://doi.org/10.1016/s1074-5521(03)00092-9

    Article  PubMed  CAS  Google Scholar 

  43. Valenzano CR, You YO, Garg A, Keatinge-Clay A, Khosla C, Cane DE (2010) Stereospecificity of the dehydratase domain of the erythromycin polyketide synthase. J Am Chem Soc 132:14697–14699. https://doi.org/10.1021/ja107344h

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Weissman KJ (2016) Genetic engineering of modular PKSs: from combinatorial biosynthesis to synthetic biology. Nat Prod Rep 33:203–230. https://doi.org/10.1039/c5np00109a

    Article  PubMed  CAS  Google Scholar 

  45. Weissman KJ, Timoney M, Bycroft M, Grice P, Hanefeld U, Staunton J, Leadlay PF (1997) The molecular basis of Celmer’s rules: the stereochemistry of the condensation step in chain extension on the erythromycin polyketide synthase. Biochemistry 36:13849–13855. https://doi.org/10.1021/bi971566b

    Article  PubMed  CAS  Google Scholar 

  46. Wilson MC, Moore BS (2012) Beyond ethylmalonyl-CoA: the functional role of crotonyl-CoA carboxylase/reductase homologs in expanding polyketide diversity. Nat Prod Rep 29:72–86. https://doi.org/10.1039/c1np00082a

    Article  PubMed  CAS  Google Scholar 

  47. Wlodek A, Kendrew SG, Coates NJ, Hold A, Pogwizd J, Rudder S, Sheehan LS, Higginbotham SJ, Stanley-Smith AE, Warneck T, Nur EAM, Radzom M, Martin CJ, Overvoorde L, Samborskyy M, Alt S, Heine D, Carter GT, Graziani EI, Koehn FE, McDonald L, Alanine A, Rodriguez Sarmiento RM, Chao SK, Ratni H, Steward L, Norville IH, Sarkar-Tyson M, Moss SJ, Leadlay PF, Wilkinson B, Gregory MA (2017) Diversity oriented biosynthesis via accelerated evolution of modular gene clusters. Nat Commun 8:1206. https://doi.org/10.1038/s41467-017-01344-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Wu N, Tsuji SY, Cane DE, Khosla C (2001) Assessing the balance between protein–protein interactions and enzyme-substrate interactions in the channeling of intermediates between polyketide synthase modules. J Am Chem Soc 123:6465–6474

    Article  PubMed  CAS  Google Scholar 

  49. Xie X, Garg A, Khosla C, Cane DE (2017) Elucidation of the cryptic methyl group epimerase activity of dehydratase domains from modular polyketide synthases using a tandem modules epimerase assay. J Am Chem Soc 139:9507–9510. https://doi.org/10.1021/jacs.7b05502

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Xie X, Khosla C, Cane DE (2017) Elucidation of the stereospecificity of C-methyltransferases from trans-AT polyketide synthases. J Am Chem Soc 139:6102–6105. https://doi.org/10.1021/jacs.7b02911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Yuzawa S, Deng K, Wang G, Baidoo EE, Northen TR, Adams PD, Katz L, Keasling JD (2017) Comprehensive in vitro analysis of acyltransferase domain exchanges in modular polyketide synthases and its application for short-chain ketone production. ACS Synth Biol 6:139–147. https://doi.org/10.1021/acssynbio.6b00176

    Article  PubMed  CAS  Google Scholar 

  52. Yuzawa S, Eng CH, Katz L, Keasling JD (2013) Broad substrate specificity of the loading didomain of the lipomycin polyketide synthase. Biochemistry 52:3791–3793. https://doi.org/10.1021/bi400520t

    Article  PubMed  CAS  Google Scholar 

  53. Yuzawa S, Eng CH, Katz L, Keasling JD (2014) Enzyme analysis of the polyketide synthase leads to the discovery of a novel analog of the antibiotic alpha-lipomycin. J Antibiot (Tokyo) 67:199–201. https://doi.org/10.1038/ja.2013.110

    Article  CAS  Google Scholar 

  54. Zheng J, Fage CD, Demeler B, Hoffman DW, Keatinge-Clay AT (2013) The missing linker: a dimerization motif located within polyketide synthase modules. ACS Chem Biol 8:1263–1270. https://doi.org/10.1021/cb400047s

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Joint BioEnergy Institute, which is funded by the US Department of Energy (DOE), the Office of Science, Office of Biological and Environmental Research under Contract No. DE-AC02-05CH11231 between DOE and Lawrence Berkeley National Laboratory. The publisher, by accepting the article for publication, acknowledges that the US government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of the manuscript, or allow others to do so, for US government purpose. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard Katz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuzawa, S., Backman, T.W.H., Keasling, J.D. et al. Synthetic biology of polyketide synthases. J Ind Microbiol Biotechnol 45, 621–633 (2018). https://doi.org/10.1007/s10295-018-2021-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-018-2021-9

Keywords

Navigation