A novel riboregulator switch system of gene expression for enhanced microbial production of succinic acid

Metabolic Engineering and Synthetic Biology - Original Paper


In this paper, a novel riboregulator Switch System of Gene Expression including an OFF-TO-ON switch and an ON-TO-OFF switch was designed to regulate the expression state of target genes between “ON” and “OFF” by switching the identifiability of ribosome recognition site (RBS) based on the thermodynamic stability of different RNA–RNA hybridizations between RBS and small noncoding RNAs. The proposed riboregulator switch system was employed for the fermentative production of succinic acid using an engineered strain of E. coli JW1021, during which the expression of mgtC gene was controlled at “ON” state and that of pepc and ecaA genes were controlled at the “OFF” state in the lag phase and switched to the “OFF” and “ON” state once the strain enters the logarithmic phase. The results showed that using the strain of JW1021, the yield and productivity of succinic acid can reach 0.91 g g−1 and 3.25 g L−1 h−1, respectively, much higher than those using the strains without harboring the riboregulator switch system.


Switch of gene expression Gene regulation RBS Ribosome Succinic acid 



We thank the Dr. Rachel Chen (Georgia Tech, Atlanta, USA) for helping data analysis. This work is financially supported by the National Key R&D Program of China (2017YFB0603105), the National Natural Science Foundation of China (21606026, 21776025), the Fundamental Research Funds for the Central Universities (106112017CDJXY220005, 106112017CDJXF220009, 106112017CDJPT220001, 106112017CDJQJ228809, and 106112017CDJXFLX0014), and China Scholarship Council (201506050056).

Supplementary material

10295_2018_2019_MOESM1_ESM.docx (668 kb)
Supplementary material 1 (DOCX 667 kb)


  1. 1.
    Balzer GJ, Thakker C, Bennett GN, San KY (2013) Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD(+)-dependent formate dehydrogenase. Metab Eng 20:1–8CrossRefPubMedGoogle Scholar
  2. 2.
    Benner SA, Sismour AM (2005) Synthetic biology. Nat Rev Genet 6(7):533–543CrossRefPubMedGoogle Scholar
  3. 3.
    Brescia CC, Mikulecky PJ, Feig AL, Sledjeski DD (2003) Identification of the Hfq-binding site on DsrA RNA: Hfq binds without altering DsrA secondary structure. RNA 9:33–43CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Clark DP (1989) The fermentation pathways of Escherichia coli. FEMS Microbiol Rev 63:223–234Google Scholar
  5. 5.
    Delihas N, Forst S (2001) MicF: an antisense RNA gene involved in response of Escherichia coli to global stress factors. J Mol Biol 313:1–12CrossRefPubMedGoogle Scholar
  6. 6.
    Dong HJ, Nilsson L, Kurland CG (1996) Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J Mol Biol 260:649–663CrossRefPubMedGoogle Scholar
  7. 7.
    Egbert RG, Klavins E (2012) Fine-tuning gene networks using simple sequence repeats. P Natl Acda Sci USA 109(42):16817–16822CrossRefGoogle Scholar
  8. 8.
    Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assas-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi ZQ, Segall-Shapiro TH, Calvey CH, Parmar PP, Hutchison CA, Smith HO, Venter JC (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329(5987):52–56CrossRefPubMedGoogle Scholar
  9. 9.
    Gu KY, Tian DS, Mao HZ, Wu LF, Yin ZC (2015) Development of marker-free transgenic Jatropha curcas producing curcin-deficient seeds through endosperm-specific RNAi-mediated gene silencing. BMC Plant Biol 15:242CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kai Y, Matsumura H, Lzui K (2003) Phosphoenolpyruvate carboxylase: three-dimensional structure and molecular mechanisms. Arch Biochem Biophys 414:170–179CrossRefPubMedGoogle Scholar
  11. 11.
    Kamiya Y, Takagi T, Ooi H, Ito H, Liang XG, Asanuma H (2014) Synthetic gene involving azobenzene-tethered T7 promoter for the photocontrol of gene expression by visible light. ACS Synth Biol 4:365–370CrossRefPubMedGoogle Scholar
  12. 12.
    Kodaki T, KatagiriF Asano M, Izui K, Katsuki H (1985) Cloning of phosphoenolpyruvate carboxylase gene from a cyanobacterium, Anacystis nidulans, in Escherichia coli. J Biochem 97:533–539CrossRefPubMedGoogle Scholar
  13. 13.
    Liu RM, Liang LY, Wu MK, Chen KQ, Jiang M, Ma JF, Wei P, Ouyang PK (2013) CO2 fixation for succinic acid production by engineered Escherichia coli co-expressing pyruvate carboxylase and nicotinic acid phosphoribosyltransferase. Biochem Eng J 79:77–83CrossRefGoogle Scholar
  14. 14.
    Liu YP, Zheng P, Sun ZH, Ni Y, Dong JJ, Zhu LL (2008) Economical succinic acid production from cane molasses by Actinobacillus succinogenes. Bioresour Technol 99(6):1736–1742CrossRefPubMedGoogle Scholar
  15. 15.
    Ma JF, Li F, Liu RM, Liang LY, Ji YL, Wei C, Jiang M, Jia HH, Ouyang PK (2014) Succinic acid production from sucrose and molasses by metabolically engineering E. coli using a cell surface display system. Biochem Eng 91:240–249CrossRefGoogle Scholar
  16. 16.
    Masse E, Escorcia FE, Gottesman S (2003) Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev 17:2374–2383CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    McKinlay JB, Vieille C, Zeikus JG (2007) Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol 76:727–740CrossRefPubMedGoogle Scholar
  18. 18.
    Moller T, Franch T, Hojrup P, Keene DR, Bachinger HP, Brennan RG, Valentin-Hansen P (2002) Hfq: abacterial Sm-like protein that mediates RNA-RNA interaction. Mol Cell 9:23–30CrossRefPubMedGoogle Scholar
  19. 19.
    Moller T, Franch T, Udesen C, Gerdes K, ValentinHansen P (2002) Spot 42 RNA mediates discoordinate expression of the E. coli galactose operon. Genes Dev 16:1696–1706CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008) An efficient succinic acid production process in a metabolically engineering Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81:459–464CrossRefPubMedGoogle Scholar
  21. 21.
    Paddon CJ, Keasling JD (2014) Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol 12:355–367CrossRefPubMedGoogle Scholar
  22. 22.
    Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kridy J (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940–943CrossRefPubMedGoogle Scholar
  23. 23.
    Sakai Y, Abe K, Nakashima S, Yoshida W, Ferri S, Sode K, Ikebukuro K (2014) Improving the gene-regulation ability of small RNAs by scaffold engineering in Escherichia coli. ACS Synth Biol 3:152–162CrossRefPubMedGoogle Scholar
  24. 24.
    Sledjeski D, Gottesman S (1995) A small RNA acts as an antisilencer of the H-NS-silenced rcsA gene of Escherichia coli. Proc Natl Acad Sci USA 92:2003–2007CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sledjeski DD, Gupta A, Gottesman S (1996) The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli. EMBO J 15:3993–4000PubMedPubMedCentralGoogle Scholar
  26. 26.
    Sledjeski DD, Whitman C, Zhang A (2001) Hfq is necessary for regulation by the untranslated RNA DsrA. J Bacteriol 183:1997–2005CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sugiyama H, Hiwa H, Makino K, Kakunaga T (1988) Strong transcriptional promoter in the 5′ upstream region of the human beta-actin gene. Gene 6:135–139Google Scholar
  28. 28.
    Tong AHY, Evangelista M, Parsons AB, Xu H, Bader GD, Page N, Robinson M, Raghibizadeh S, Hogue CWV, Bussey H, Andrews B, Tyers M, Boone C (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294:2364–2368CrossRefPubMedGoogle Scholar
  29. 29.
    Urban JH, Vogel J (2007) Translational control and target recognition by Escherichia coli small RNAs in vivo. Nucleic Acids Res 35:1018–1037CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Vellanoweth RL, Rabinowitz JC (1992) The influence of ribosome-bingding-site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo. Mol Microbiol 6:1105–1114CrossRefPubMedGoogle Scholar
  31. 31.
    Vogel J, Luisi BF (2011) Hfq and its constellation of RNA. Nat Rev Microbiol 9:578–589CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wang D, Li Q, Li WL, Xing JM, Su ZG (2009) Improvement of succinic acid production by overexpression of a cyanobacterial carbonic anhydrase in Escherichia coli. Enzyme Microbial Technol 45:491–497CrossRefGoogle Scholar
  33. 33.
    Wang HC, Wang HY, Wang M, Zhang L, Wang R, Mei YZ, Shao WL (2014) Identification and refinement of two strong constitutive promoters for gene expression system of Schizosaccharomyces pombe. World J Microbiol Biotechnol 30:1809–1817CrossRefPubMedGoogle Scholar
  34. 34.
    Wang J, Qin DD, Zhang BY, Li Q, Li S, Zhou XH, Dong LC, Wang D (2015) Fine-tuning of ecaA and pepc gene expression increases succinic acid production in Escherichia coli. Appl Microbiol Biot 90:8575–8586CrossRefGoogle Scholar
  35. 35.
    Wang J, Yang L, Wang D, Dong LC, Chen R (2016) Enhanced succinic acid productivity by expression of mgtCB gene in Escherichia coli mutant. J Ind Microbiol Biotechnol 43:505–516CrossRefPubMedGoogle Scholar
  36. 36.
    Werpy T, Petersen G (2004) Top value added chemicals from biomass Department of energy, Washington, DC, pp 31–33Google Scholar
  37. 37.
    Wibur KM, Anderson NG (1948) Electrometric and colorimetric determination of carbonic anhydrase. J Biol Chem 176:147–154Google Scholar
  38. 38.
    Yan Q, Zheng P, Dong JJ, Sun ZH (2014) A fibrous bed bioreactor to improve the productivity of succinic acid by Actinobacillus succinogenes. J Chem Technol Biot 89:1760–1766CrossRefGoogle Scholar
  39. 39.
    Yin DM, Deng SZ, Zhan KH, Cui DQ (2007) High-oleic peanut oils produced by HpRNA-mediated gene silencing of oleate desaturase. Plant Mol Biol Reporter 25:14–163CrossRefGoogle Scholar
  40. 40.
    Zhang XL, Jantama K, Moore JC, Jarboe LR, Shanmugam KT, Ingram LO (2009) Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Proc Natl Acad Sci USA 106(48):20180–20185CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringChongqing UniversityChongqingPeople’s Republic of China
  2. 2.School of Chemistry and Chemical Engineering, Collaborative Innovation Center for Green Developmentin Wuling Moutain Area, Research Center for Environmental Monitoring, Hazard Prevention of Three Gorges ReservoirYangtze Normal UniversityChongqingPeople’s Republic of China
  3. 3.School of Chemical and Biomolecular Engineering and Renewable Bioproducts InstituteGeorgia Institute of TechnologyAtlantaUSA
  4. 4.Key Lahoratory of Catalysis and Functional Organic Molecule of Chongqing, College of Environment and ResourceChongqing Technology and Business UniversityChongqingPeople’s Republic of China
  5. 5.Key Laboratory of Low-grade Energy Utilization Technologies and Systems of the Ministry of EducationChongqing UniversityChongqingPeople’s Republic of China
  6. 6.Institute of Energy ResourcesHebei Academy of ScienceShijiazhuangPeople’s Republic of China

Personalised recommendations