Regulatory and biosynthetic effects of the bkd gene clusters on the production of daptomycin and its analogs A21978C1–3

Genetics and Molecular Biology of Industrial Organisms - Original Paper


Daptomycin is a cyclic lipopeptide antibiotic produced by Streptomyces roseosporus in an acidic peptide complex A21978C. In this complex, A21978C1–3 is most abundant and contains branched-chain fatty acyl groups, while daptomycin has a straight decanoic acyl group. The branched-chain α-keto acid dehydrogenase complex (BCDH complex), encoded by bkd gene clusters in Streptomyces, is responsible for the early step of converting branched-chain amino acids into branched-chain fatty acids. In a daptomycin industrial producer S. roseosporus L30, two alleles of bkd gene clusters, bkdA1B1C1/bkdA2B2C2, and a regulatory gene bkdR located upstream of bkdA2B2C2 are identified. We show that BkdR positively regulated bkdA2B2C2 expression and was negatively auto-regulated, but is not directly involved in regulation of daptomycin gene cluster expression. However, BkdR is required for both daptomycin and A21978C1–3 production. Furthermore, deletion of bkdA2B2C2 only led to partial reduction of A21978C1–3 production, while the ΔbkdA1B1C1 mutant shows very weak production of A21978C1–3, and the double bkd mutant has a similar production profile as the single ΔbkdA1B1C1 mutant, suggesting that bkdA1B1C1 gene cluster plays a dominant role in branched-chain fatty acid biosynthesis. So we reveal a unique regulatory function of BkdR and genetic engineered a bkd null strain for daptomycin production with reduced impurities.


Streptomyces Daptomycin Transcriptional regulation α-Keto acid dehydrogenase Branched-chain fatty acid 



This work was financially supported by the National Natural Science Foundation of China (31730002, 31520103901) to Yong-Quan Li, and National Natural Science Foundation of China (31571284, 31770071) to Xu-Ming Mao.

Supplementary material

10295_2018_2011_MOESM1_ESM.pdf (6.8 mb)
Supplementary material 1 (PDF 6913 kb)


  1. 1.
    Bierman M, Logan R, Obrien K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces Spp. Gene 116:43–49. CrossRefPubMedGoogle Scholar
  2. 2.
    Boeck LD, Fukuda DS, Abbott BJ, Debono M (1988) Deacylation of A21978C, an acidic lipopeptide antibiotic complex, by Actinoplanes utahensis. J Antibiot 41:1085–1092CrossRefPubMedGoogle Scholar
  3. 3.
    Brinkman AB, Ettema TJG, de Vos WM, van der Oost J (2003) The Lrp family of transcriptional regulators. Mol Microbiol 48:287–294. CrossRefPubMedGoogle Scholar
  4. 4.
    Cui Q, Zhou F, Liu W, Tao Y (2017) Avermectin biosynthesis: stable functional expression of branched chain alpha-keto acid dehydrogenase complex from Streptomyces avermitilis in Escherichia coli by selectively regulating individual subunit gene expression. Biotechnol Lett. Google Scholar
  5. 5.
    Debarbouille M, Gardan R, Arnaud M, Rapoport G (1999) Role of BkdR, a transcriptional activator of the SigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis. J Bacteriol 181:2059–2066PubMedPubMedCentralGoogle Scholar
  6. 6.
    Debono M, Abbott BJ, Molloy RM, Fukuda DS, Hunt AH, Daupert VM, Counter FT, Ott JL, Carrell CB, Howard LC, Boeck LD, Hamill RL (1988) Enzymatic and chemical modifications of lipopeptide antibiotic A21978c—the synthesis and evaluation of daptomycin (Ly146032). J Antibiot 41:1093–1105CrossRefPubMedGoogle Scholar
  7. 7.
    Debono M, Barnhart M, Carrell CB, Hoffmann JA, Occolowitz JL, Abbott BJ, Fukuda DS, Hamill RL, Biemann K, Herlihy WC (1987) A21978c, a complex of new acidic peptide antibiotics—isolation, chemistry, and mass-spectral structure elucidation. J Antibiot 40:761–777CrossRefPubMedGoogle Scholar
  8. 8.
    Denoya CD, Fedechko RW, Hafner EW, Mcarthur HAI, Morgenstern MR, Skinner DD, Stutzmanengwall K, Wax RG, Wernau WC (1995) A 2nd branched-chain alpha-keto acid dehydrogenase gene-cluster (bkdfgh) from Streptomyces avermitilis—its relationship to avermectin biosynthesis and the construction of a bkdf mutant suitable for the production of novel antiparasitic avermectins. J Bacteriol 177:3504–3511CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Eisenstein BI, Oleson FB, Baltz RH (2010) Daptomycin: from the mountain to the clinic, with essential help from francis tally, MD. Clin Infect Dis 50:S10–S15. CrossRefPubMedGoogle Scholar
  10. 10.
    Flett F, Mersinias V, Smith CP (1997) High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting Streptomycetes. FEMS Microbiol Lett 155:223–229. CrossRefPubMedGoogle Scholar
  11. 11.
    Fujita Y, Matsuoka H, Hirooka K (2007) Regulation of fatty acid metabolism in bacteria. Mol Microbiol 66:829–839. CrossRefPubMedGoogle Scholar
  12. 12.
    Hafner EW, Holley BW, Holdom KS, Lee SE, Wax RG, Beck D, Mcarthur HAI, Wernau WC (1991) Branched-chain fatty-acid requirement for avermectin production by a mutant of Streptomyces avermitilis lacking branched-chain 2-Oxo acid dehydrogenase-activity. J Antibiot 44:349–356CrossRefPubMedGoogle Scholar
  13. 13.
    Huang D, Wen JP, Wang GY, Yu GH, Jia XQ, Chen YL (2012) In silico aided metabolic engineering of Streptomyces roseosporus for daptomycin yield improvement. Appl Microbiol Biot 94:637–649. CrossRefGoogle Scholar
  14. 14.
    Huber FM, Berry DM, Pieper RL, Tietz AJ (1990) The synthesis of A21978c analogs by Streptomyces roseosporus cultivated under carbon limitation and fed fatty-acids. Biotechnol Lett 12:789–792. CrossRefGoogle Scholar
  15. 15.
    Huber FM, Pieper RL, Tietz AJ (1988) The formation of daptomycin by supplying decanoic acid to Streptomyces roseosporus cultures producing the antibiotic complex A21978c. J Biotechnol 7:283–292. CrossRefGoogle Scholar
  16. 16.
    Kaneda T (1991) Iso-fatty and anteiso-fatty acids in bacteria—biosynthesis, function, and taxonomic significance. Microbiol Rev 55:288–302PubMedPubMedCentralGoogle Scholar
  17. 17.
    Knoten CA, Hudson LL, Coleman JP, Farrow JM, Pesci EC (2011) KynR, a Lrp/AsnC-type transcriptional regulator, directly controls the kynurenine pathway in Pseudomonas aeruginosa. J Bacteriol 193:6567–6575. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lee DW, Ng BG, Kim BS (2015) Increased valinomycin production in mutants of Streptomyces sp M10 defective in bafilomycin biosynthesis and branched-chain alpha-keto acid dehydrogenase complex expression. J Ind Microbiol Biot 42:1507–1517. CrossRefGoogle Scholar
  19. 19.
    Liu SP, Yuan PH, Wang YY, Liu XF, Zhou ZX, Bu QT, Yu P, Jiang H, Li YQ (2015) Generation of the natamycin analogs by gene engineering of natamycin biosynthetic genes in Streptomyces chattanoogensis L10. Microbiol Res 173:25–33. CrossRefPubMedGoogle Scholar
  20. 20.
    Madhusudhan KT, Hester KL, Friend V, Sokatch JR (1997) Transcriptional activation of the bkd operon of Pseudomonas putida by BkdR. J Bacteriol 179:1992–1997CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Madhusudhan KT, Lorenz D, Sokatch JR (1993) The bkdR Gene of Pseudomonas putida is required for expression of the bkd operon and encodes a protein related to Lrp of Escherichia coli. J Bacteriol 175:3934–3940CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Mao XM, Luo S, Zhou RC, Wang F, Yu P, Sun N, Chen XX, Tang Y, Li YQ (2015) Transcriptional regulation of the daptomycin gene cluster in Streptomyces roseosporus by an autoregulator, AtrA. J Biol Chem 290:7992–8001. CrossRefPubMedGoogle Scholar
  23. 23.
    Mao XM, Sun ZH, Liang BR, Wang ZB, Feng WH, Huang FL, Li YQ (2013) Positive Feedback regulation of stgR expression for secondary metabolism in Streptomyces coelicolor. J Bacteriol 195:2072–2078. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Mao XM, Zhou Z, Hou XP, Guan WJ, Li YQ (2009) Reciprocal regulation between SigK and differentiation programs in Streptomyces coelicolor. J Bacteriol 191:6473–6481. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    McHenney MA, Baltz RH (1996) Gene transfer and transposition mutagenesis in Streptomyces roseosporus: mapping of insertions that influence daptomycin or pigment production. Microbiol-Sgm 142:2363–2373CrossRefGoogle Scholar
  26. 26.
    Miao V, Coeffet-LeGal MF, Brian P, Brost R, Penn J, Whiting A, Martin S, Ford R, Parr I, Bouchard M, Silva CJ, Wrigley SK, Baltz RH (2005) Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry. Microbiol-Sgm 151:1507–1523. CrossRefGoogle Scholar
  27. 27.
    Robbel L, Marahiel MA (2010) Daptomycin, a bacterial lipopeptide synthesized by a nonribosomal machinery. J Biol Chem 285:27501–27508. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Singh VK, Hattangady DS, Giotis ES, Singh AK, Chamberlain NR, Stuart MK, Wilkinson BJ (2008) Insertional inactivation of branched-chain alpha-keto acid dehydrogenase in Staphylococcus aureus leads to decreased branched-chain membrane fatty acid content and increased susceptibility to certain stresses. Appl Environ Microb 74:5882–5890. CrossRefGoogle Scholar
  29. 29.
    Sprusansky O, Stirrett K, Skinner D, Denoya C, Westpheling J (2005) The bkdR gene of Streptomyces coelicolor is required for morphogenesis and antibiotic production and encodes a transcriptional regulator of a branched-chain amino acid dehydrogenase complex. J Bacteriol 187:664–671. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Stirrett K, Denoya C, Westpheling J (2009) Branched-chain amino acid catabolism provides precursors for the Type II polyketide antibiotic, actinorhodin, via pathways that are nutrient dependent. J Ind Microbiol Biot 36:129–137. CrossRefGoogle Scholar
  31. 31.
    Sun JH, Kelemen GH, Fernandez-Abalos JM, Bibb MJ (1999) Green fluorescent protein as a reporter for spatial and temporal gene expression in Streptomyces coelicolor A3(2). Microbiol-Uk 145:2221–2227CrossRefGoogle Scholar
  32. 32.
    Thaw P, Sedelnikova SE, Muranova T, Wiese S, Ayora S, Alonso JC, Brinkman AB, Akerboom J, van der Oost J, Rafferty JB (2006) Structural insight into gene transcriptional regulation and effector binding by the Lrp/AsnC family. Nucleic Acids Res 34:1439–1449. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Thaw P, Sedelnikova SE, Muranova T, Wiese S, Ayora S, Alonso JC, Brinkman AB, Akerboom J, van der Oost J, Rafferty JB (2006) Structural insight into gene transcriptional regulation and effector binding by the Lrp/AsnC family (vol 34, pg 1439, 2006). Nucleic Acids Res 34:1944–1945. CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Kieser Tobias, Bibb Mervyn J, Buttner Mark J, Chater Keith F, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Centre, EnglandGoogle Scholar
  35. 35.
    Wang F, Ren NN, Luo S, Chen XX, Mao XM, Li YQ (2014) DptR2, a DeoR-type auto-regulator, is required for daptomycin production in Streptomyces roseosporus. Gene 544:208–215. CrossRefPubMedGoogle Scholar
  36. 36.
    Wittmann M, Linne U, Pohlmann V, Marahiel MA (2008) Role of DptE and DptF in the lipidation reaction of daptomycin. FEBS J 275:5343–5354. CrossRefPubMedGoogle Scholar
  37. 37.
    Yuan PH, Zhou RC, Chen XP, Luo S, Wang F, Mao XM, Li YQ (2016) DepR1, a TetR family transcriptional regulator, positively regulates daptomycin production in an industrial producer, Streptomyces roseosporus SW0702. Appl Environ Microb 82:1898–1905. CrossRefGoogle Scholar
  38. 38.
    Zmijewski MJ, Briggs B, Occolowitz J (1986) Role of branched-chain fatty-acid precursors in regulating factor profile in the biosynthesis of A21978C complex. J Antibiot 39:1483–1485CrossRefPubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2018

Authors and Affiliations

  1. 1.Institute of Pharmaceutical BiotechnologyZhejiang UniversityHangzhouChina
  2. 2.Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina

Personalised recommendations