Abstract
Synthetic biology, encompassing the design and construction of novel artificial biological pathways and organisms and the redesign of existing natural biological systems, is rapidly expanding the number of applications for which biological systems can play an integral role. In the context of chemical production, the combination of synthetic biology and metabolic engineering approaches continues to unlock the ability to biologically produce novel and complex molecules from a variety of feedstocks. Here, we utilize a synthetic approach to design and build a pathway to produce 2-hydroxyisovaleric acid in Escherichia coli and demonstrate how pathway design can be supplemented with metabolic engineering approaches to improve pathway performance from various carbon sources. Drawing inspiration from the native pathway for the synthesis of the 5-carbon amino acid l-valine, we exploit the decarboxylative condensation of two molecules of pyruvate, with subsequent reduction and dehydration reactions enabling the synthesis of 2-hydroxyisovaleric acid. Key to our approach was the utilization of an acetolactate synthase which minimized kinetic and regulatory constraints to ensure sufficient flux entering the pathway. Critical host modifications enabling maximum product synthesis from either glycerol or glucose were then examined, with the varying degree of reduction of these carbons sources playing a major role in the required host background. Through these engineering efforts, the designed pathway produced 6.2 g/L 2-hydroxyisovaleric acid from glycerol at 58% of maximum theoretical yield and 7.8 g/L 2-hydroxyisovaleric acid from glucose at 73% of maximum theoretical yield. These results demonstrate how the combination of synthetic biology and metabolic engineering approaches can facilitate bio-based chemical production.
This is a preview of subscription content, log in to check access.


References
- 1.
Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89. https://doi.org/10.1038/nature06450
- 2.
Atsumi S, Li Z, Liao JC (2009) Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli. Appl Environ Microbiol 75:6306–6311. https://doi.org/10.1128/aem.01160-09
- 3.
Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. https://doi.org/10.1038/msb4100050
- 4.
Ze Barak, Chipman DM (2012) Allosteric regulation in acetohydroxyacid synthases (AHASs)—different structures and kinetic behavior in isozymes in the same organisms. Arch Biochem Biophys 519:167–174. https://doi.org/10.1016/j.abb.2011.11.025
- 5.
Burk MJ, Van Dien S (2016) Biotechnology for chemical production: challenges and opportunities. Trends Biotechnol 34:187–190. https://doi.org/10.1016/j.tibtech.2015.10.007
- 6.
Chambellon E, Rijnen L, Lorquet F, Gitton C, van Hylckama Vlieg JET, Wouters JA, Yvon M (2009) The D-2-Hydroxyacid dehydrogenase incorrectly annotated PanE is the sole reduction system for branched-chain 2-keto acids in Lactococcus lactis. J Bacteriol 191:873–881. https://doi.org/10.1128/jb.01114-08
- 7.
Cheong S, Clomburg JM, Gonzalez R (2016) Energy- and carbon-efficient synthesis of functionalized small molecules in bacteria using non-decarboxylative Claisen condensation reactions. Nat Biotechnol 34:556–561. https://doi.org/10.1038/nbt.3505
- 8.
Choi SY, Park SJ, Kim WJ, Yang JE, Lee H, Shin J, Lee SY (2016) One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli. Nat Biotechnol 34:435–440. https://doi.org/10.1038/nbt.3485
- 9.
Clomburg JM, Crumbley AM, Gonzalez R (2017) Industrial biomanufacturing: the future of chemical production. Science. https://doi.org/10.1126/science.aag0804
- 10.
Clomburg JM, Gonzalez R (2013) Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends Biotechnol 31:20–28. https://doi.org/10.1016/j.tibtech.2012.10.006
- 11.
Clomburg JM, Vick JE, Blankschien MD, Rodriguez-Moya M, Gonzalez R (2012) A synthetic biology approach to engineer a functional reversal of the β-oxidation cycle. ACS Synth Biol 1:541–554. https://doi.org/10.1021/sb3000782
- 12.
Cohen-Arazi N, Katzhendler J, Kolitz M, Domb AJ (2008) Preparation of new α-hydroxy acids derived from amino acids and their corresponding polyesters. Macromolecules 41:7259–7263. https://doi.org/10.1021/ma8012477
- 13.
Cordova LT, Alper HS (2016) Central metabolic nodes for diverse biochemical production. Curr Opin Chem Biol 35:37–42. https://doi.org/10.1016/j.cbpa.2016.08.025
- 14.
Cornils B, Fischer RW, Kohlpaintner C (2000) Butanals. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/14356007.a04_447
- 15.
Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645. https://doi.org/10.1073/pnas.120163297
- 16.
Dharmadi Y, Murarka A, Gonzalez R (2006) Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng 94:821–829. https://doi.org/10.1002/bit.21025
- 17.
Durnin G, Clomburg J, Yeates Z, Alvarez PJJ, Zygourakis K, Campbell P, Gonzalez R (2009) Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli. Biotechnol Bioeng 103:148–161. https://doi.org/10.1002/bit.22246
- 18.
Erickson B, Nelson Winters P (2012) Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnol J 7:176–185. https://doi.org/10.1002/biot.201100069
- 19.
Felice MD, Guardiola J, Esposito B, Iaccarino M (1974) Structural genes for a newly recognized acetolactate synthase in Escherichia coli K-12. J Bacteriol 120:1068–1077
- 20.
Fessenden RJ, Fesenden JS, Logue MW (1998) Organic chemistry, 6th edn. Brooks/Cole Publishing Company, Pacific Grove
- 21.
Furukawa N, Miyanaga A, Togawa M, Nakajima M, Taguchi H (2014) Diverse allosteric and catalytic functions of tetrameric d-lactate dehydrogenases from three Gram-negative bacteria. AMB Express 4:76. https://doi.org/10.1186/s13568-014-0076-1
- 22.
Gollop N, Damri B, Ze Barak, Chipman DM (1989) Kinetics and mechanism of acetohydroxy acid synthase isozyme III from Escherichia coli. Biochemistry 28:6310–6317. https://doi.org/10.1021/bi00441a024
- 23.
Gollop N, Damri B, Chipman DM, Barak Z (1990) Physiological implications of the substrate specificities of acetohydroxy acid synthases from varied organisms. J Bacteriol 172:3444–3449
- 24.
Guardiola J, De Felice M, Lamberti A, Iaccarino M (1977) The acetolactate synthase isoenzymes of Escherichia coli K-12. Mol Gen Genet 156:17–25. https://doi.org/10.1007/bf00272247
- 25.
Holtzclaw WD, Chapman LF (1975) Degradative acetolactate synthase of Bacillus subtilis: purification and properties. J Bacteriol 121:917–922
- 26.
Iwakura Y, Iwata K, Matsuo S, Tohara A (1971) Synthesis of optically active poly(L-α-hydroxyisovalerate) and poly(L-α-hydroxyisocaproate). Die Makromolekulare Chemie 146:21–32. https://doi.org/10.1002/macp.1971.021460103
- 27.
Jiang GR, Nikolova S, Clark DP (2001) Regulation of the ldhA gene, encoding the fermentative lactate dehydrogenase of Escherichia coli. Microbiology 147:2437–2446. https://doi.org/10.1099/00221287-147-9-2437
- 28.
Kang YS, Durfee T, Glasner JD, Qiu Y, Frisch D, Winterberg KM, Blattner F (2004) Systematic mutagenesis of the Escherichia coli genome. J Bacteriol 186:4921–4930. https://doi.org/10.1128/jb.186.15.1921-1930.2004
- 29.
Kim S, Clomburg J, Gonzalez R (2015) Synthesis of medium-chain length (C6–C10) fuels and chemicals via β-oxidation reversal in Escherichia coli. J Ind Microbiol Biotechnol 42:465–475. https://doi.org/10.1007/s10295-015-1589-6
- 30.
Klingler FD, Ebertz W (2000) Oxocarboxylic acids. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/14356007.a18_313
- 31.
Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY (2012) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol 8:536–546
- 32.
Marubayashi H, Nojima S (2016) Crystallization and solid-state structure of poly(l-2-hydroxy-3-methylbutanoic acid). Macromolecules 49:5538–5547. https://doi.org/10.1021/acs.macromol.5b02774
- 33.
Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor
- 34.
Murarka A, Dharmadi Y, Yazdani SS, Gonzalez R (2008) Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Appl Environ Microbiol 74:1124–1135. https://doi.org/10.1128/aem.02192-07
- 35.
Myers JW (1961) Dihydroxy acid dehydrase: an enzyme involved in the biosynthesis of isoleucine and valine. J Biol Chem 236:1414–1418
- 36.
Neidhardt FC, Bloch PL, Smith DF (1974) Culture medium for enterobacteria. J Bacteriol 119:736–747
- 37.
Neidhardt FC, Curtiss R (1996) Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington, D.C.
- 38.
Ng C, M-y Jung, Lee J, Oh M-K (2012) Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb Cell Fact 11:68. https://doi.org/10.1186/1475-2859-11-68
- 39.
Nielsen J, Keasling Jay D (2016) Engineering cellular metabolism. Cell 164:1185–1197. https://doi.org/10.1016/j.cell.2016.02.004
- 40.
Nielsen J, Villadsen J, Liden G (2003) Bioreaction engineering principles. Kluwer Academic/Plenum Publishers, New York
- 41.
Nwaukwa SO, Keehn PM (1982) Oxidative cleavage of α-diols, α-diones, α-hydroxy-ketones and α-hydroxy- and α-keto acids with calcium hypochlorite [Ca(OCl)2]. Tetrahedron Lett 23:3135–3138. https://doi.org/10.1016/S0040-4039(00)88578-0
- 42.
Ramakrishnan T, Adelberg EA (1965) Regulatory mechanisms in the biosynthesis of isoleucine and valine II. Identification of two operator genes. J Bacteriol 89:654–660
- 43.
Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor
- 44.
Sawers R, Blokesch M, Böck A (2004) Anaerobic formate and hydrogen metabolism. EcoSal Plus. https://doi.org/10.1128/ecosalplus.3.5.4
- 45.
Sawers R, Clark D (2004) Fermentative pyruvate and acetyl-coenzyme A metabolism. EcoSal Plus. https://doi.org/10.1128/ecosalplus.3.5.3
- 46.
Shiue E, Prather KLJ (2012) Synthetic biology devices as tools for metabolic engineering. Biochem Eng J 65:82–89. https://doi.org/10.1016/j.bej.2012.04.006
- 47.
Tsuji H, Hayakawa T (2016) Heterostereocomplex- and homocrystallization and thermal properties and degradation of substituted poly(lactic acid)s, poly(l-2-hydroxybutanoic acid) and poly(d-2-hydroxy-3-methylbutanoic acid). Macromol Chem Phys 217:2483–2493. https://doi.org/10.1002/macp.201600359
- 48.
Umbarger HE, Brown B, Eyring EJ (1960) Isoleucine and valine metabolism in Escherichia coli: IX. Utilization of acetolactate and acetohydroxybutyrate. J Biol Chem 235:1425–1432
- 49.
Vick JE, Clomburg JM, Blankschien MD, Chou A, Kim S, Gonzalez R (2015) Escherichia coli enoyl-acyl carrier protein reductase (FabI) supports efficient operation of a functional reversal of the β-oxidation cycle. Appl Environ Microbiol 81:1406–1416. https://doi.org/10.1128/aem.03521-14
- 50.
Yang JE, Kim JW, Oh YH, Choi SY, Lee H, Park AR, Shin J, Park SJ, Lee SY (2016) Biosynthesis of poly(2-hydroxyisovalerate-co-lactate) by metabolically engineered Escherichia coli. Biotechnol J 11:1572–1585. https://doi.org/10.1002/biot.201600420
- 51.
Yazdani SS, Gonzalez R (2008) Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metab Eng 10:340–351. https://doi.org/10.1016/j.ymben.2008.08.005
- 52.
Zheng R, Blanchard JS (2003) Substrate specificity and kinetic isotope effect analysis of the Eschericia coli ketopantoate reductase. Biochemistry 42:11289–11296. https://doi.org/10.1021/bi030101k
Acknowledgements
This work was supported by Grants from the U.S. National Science Foundation (EEC-0813570, CBET-1134541, and CBET-1067565).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cheong, S., Clomburg, J.M. & Gonzalez, R. A synthetic pathway for the production of 2-hydroxyisovaleric acid in Escherichia coli. J Ind Microbiol Biotechnol 45, 579–588 (2018). https://doi.org/10.1007/s10295-018-2005-9
Received:
Accepted:
Published:
Issue Date:
Keywords
- Synthetic biology
- Metabolic engineering
- Fuels and chemicals
- 2-Hydroxyisovaleric acid