Becart J, Chevalier C, Biesse J (1990) Quantitative analysis of phospholipids by HPLC with a light-scattering evaporation detector—application to raw materials for cosmetic use. HRC J High Resolut Chromatogr 13:126–129
CAS
Article
Google Scholar
Cara C, Ruiz E, Ballesteros M, Manzanares P, Negro MJ, Castro E (2008) Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel 87:692–700. doi:10.1016/j.fuel.2007.05.008
CAS
Article
Google Scholar
Casadei MA, Manas P, Niven G, Needs E, Mackey BM (2002) Role of membrane fluidity in pressure resistance of Escherichia coli NCTC 8164. Appl Environ Microbiol 68:5965–5972. doi:10.1128/aem.68.12.5965-5972.2002
CAS
Article
PubMed
PubMed Central
Google Scholar
Cascales E, Bernadac A, Gavioli M, Lazzaroni JC, Lloubes R (2002) Pal lipoprotein of Escherichia coli plays a major role in outer membrane integrity. J Bacteriol 184:754–759
CAS
Article
PubMed
PubMed Central
Google Scholar
Cheville AM, Arnold KW, Buchrieser C, Cheng CM, Kaspar CW (1996) rpoS regulation of acid, heat, and salt tolerance in Escherichia coli O157:H7. Appl Environ Microbiol 62:1822–1824
CAS
PubMed
PubMed Central
Google Scholar
Chi Z, Rover M, Jun E, Deaton M, Johnston P, Brown RC, Wen Z, Jarboe LR (2013) Overliming detoxification of pyrolytic sugar syrup for direct fermentation of levoglucosan to ethanol. Bioresour Technol 150:220–227. doi:10.1016/j.biortech.2013.09.138
CAS
Article
PubMed
Google Scholar
Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuels 18:590–598. doi:10.1021/ef034067u
CAS
Article
Google Scholar
Dalluge DL, Daugaard T, Johnston P, Kuzhiyil N, Wright MM, Brown RC (2014) Continuous production of sugars from pyrolysis of acid-infused lignocellulosic biomass. Green Chem 16:4144–4155. doi:10.1039/c4gc00602j
CAS
Article
Google Scholar
Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645. doi:10.1073/pnas.120163297
CAS
Article
PubMed
PubMed Central
Google Scholar
Davis KM, Rover M, Brown RC, Bai XL, Wen ZY, Jarboe LR (2016) Recovery and utilization of lignin monomers as part of the biorefinery approach. Energies. doi:10.3390/en9100808
Google Scholar
Delgenes JP, Moletta R, Navarro JM (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme Microb Technol 19:220–225. doi:10.1016/0141-0229(95)00237-5
CAS
Article
Google Scholar
Demendoza D, Cronan JE (1983) Thermal regulation of membrane lipid fluidity in bacteria. Trends Biochem Sci 8:49–52. doi:10.1016/0968-0004(83)90388-2
CAS
Article
Google Scholar
Denich TJ, Beaudette LA, Lee H, Trevors JT (2003) Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J Microbiol Methods 52:149–182. doi:10.1016/s0167-7012(02)00155-0
CAS
Article
PubMed
Google Scholar
Diefenbach R, Heipieper HJ, Keweloh H (1992) The conversion of cis into trans unsaturated fatty acids in Pseudomonas putida P8—evidence for a role in the regulation of membrane fluidity. Appl Microbiol Biotechnol 38:382–387
CAS
Article
Google Scholar
Donato MM, Antunes-Madeira MC, Jurado AS, Madeira VMC (1997) Partition of DDT and DDE into membranes and extracted lipids of Bacillus stearothermophilus. Bull Environ Contam Toxicol 59:696–701
CAS
Article
PubMed
Google Scholar
Dunlop MJ (2011) Engineering microbes for tolerance to next-generation biofuels. Biotechnol Biofuels. doi:10.1186/1754-6834-4-32
PubMed
PubMed Central
Google Scholar
Eboigbodin KE, Biggs CA (2008) Characterization of the extracellular polymeric substances produced by Escherichia coli using infrared spectroscopic, proteomic, and aggregation studies. Biomacromol 9:686–695. doi:10.1021/bm701043c
CAS
Article
Google Scholar
Esteghlalian A, Hashimoto AG, Fenske JJ, Penner MH (1997) Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass. Bioresour Technol 59:129–136. doi:10.1016/s0960-8524(97)81606-9
CAS
Article
Google Scholar
Fengel D, Wegener G (2003) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin, p 613
Google Scholar
Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633. doi:10.1038/nrmicro2415
CAS
PubMed
Google Scholar
Hamelinck CN, van Hooijdonk G, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410. doi:10.1016/j.biombioe.2004.09.002
CAS
Article
Google Scholar
Heipieper HJ, Diefenbach R, Keweloh H (1992) Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl Environ Microbiol 58:1847–1852
CAS
PubMed
PubMed Central
Google Scholar
Heipieper HJ, Keweloh H, Rehm HJ (1991) Influence of phenols on growth and membrane-permeability of free and immobilized Escherichia coli. Appl Environ Microbiol 57:1213–1217
CAS
PubMed
PubMed Central
Google Scholar
Helle S, Cameron D, Lam J, White B, Duff S (2003) Effect of inhibitory compounds found in biomass hydrolysates on growth and xylose fermentation by a genetically engineered strain of S. cerevisiae. Enzyme Microb Technol 33:786–792. doi:10.1016/s0141-0229(03)00214-x
CAS
Article
Google Scholar
Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18. doi:10.1016/j.biortech.2008.05.027
CAS
Article
PubMed
Google Scholar
Ingram LO (1976) Adaptation of membrane lipids to alcohols. J Bacteriol 125:670–678
CAS
PubMed
PubMed Central
Google Scholar
Jackson MB, Cronan JE (1978) Estimate of minimum amount of fluid lipid required for growth of Escherichia coli. Biochem Biophys Acta 512:472–479. doi:10.1016/0005-2736(78)90157-8
CAS
Article
PubMed
Google Scholar
Jarboe LR, Grabar TB, Yomano LP, Shanmugan KT, Ingram LO (2007) Development of ethanologenic bacteria. In: Olsson L (ed) Biofuels. Advanced in biohcemical engineering and biotechnology, vol 108. Springer, Berlin, Heidelberg, pp 237–261. doi:10.1007/10_2007_068
Jarboe LR, Liu P, Royce LA (2011) Engineering inhibitor tolerance for the production of biorenewable fuels and chemicals. Curr Opin Chem Eng 1:38–42
CAS
Article
Google Scholar
Jorgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 1:119–134. doi:10.1002/bbb.4
Article
Google Scholar
Kleinzeller A (1999) Charles Ernest Overton’s concept of a cell membrane. Membr Permeability 48:1–22
Google Scholar
Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26. doi:10.1007/s00253-004-1642-2
CAS
Article
PubMed
Google Scholar
Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729. doi:10.1021/ie801542g
CAS
Article
Google Scholar
Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391. doi:10.1007/s10295-008-0327-8
CAS
Article
PubMed
Google Scholar
Kuzhiyil N, Dalluge D, Bai X, Kim KH, Brown RC (2012) Pyrolytic sugars from cellulosic biomass. Chemsuschem 5:2228–2236. doi:10.1002/cssc.201200341
CAS
Article
PubMed
Google Scholar
Laird DA, Brown RC, Amonette JE, Lehmann J (2009) Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioprod Biorefin 3:547–562. doi:10.1002/bbb.169
CAS
Article
Google Scholar
Lalou S, Mantzouridou F, Paraskevopoulou A, Bugarski B, Levic S, Nedovic V (2013) Bioflavour production from orange peel hydrolysate using immobilized Saccharomyces cerevisiae. Appl Microbiol Biot 97:9397–9407. doi:10.1007/s00253-013-5181-6
CAS
Article
Google Scholar
Langsrud S, Sundheim G (1996) Flow cytometry for rapid assessment of viability after exposure to a quaternary ammonium compound. J Appl Bacteriol 81:411–418
CAS
PubMed
Google Scholar
Laspidou CS, Rittmann BE (2002) A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res 36:2711–2720. doi:10.1016/s0043-1354(01)00413-4
CAS
Article
PubMed
Google Scholar
Layton DS, Ajjarapu A, Choi DW, Jarboe LR (2011) Engineering ethanologenic Escherichia coli for levoglucosan utilization. Bioresour Technol. doi:10.1016/j.biortech.2011.06.011
PubMed
Google Scholar
Lennen RM, Kruziki MA, Kumar K, Zinkel RA, Burnum KE, Lipton MS, Hoover SW, Ranatunga DR, Wittkopp TM, Marner WD II, Pfleger BF (2011) Membrane stresses induced by overproduction of free fatty acids in Escherichia coli. Appl Environ Microbiol 77:8114–8128. doi:10.1128/aem.05421-11
CAS
Article
PubMed
PubMed Central
Google Scholar
Lennen RM, Pfleger BF (2013) Modulating membrane composition alters free fatty acid tolerance in Escherichia coli. PLoS One. doi:10.1371/journal.pone.0054031
PubMed
PubMed Central
Google Scholar
Li Q, He Y-C, Xian M, Jun G, Xu X, Yang J-M, Li L-Z (2009) Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour Technol 100:3570–3575. doi:10.1016/j.biortech.2009.02.040
CAS
Article
PubMed
Google Scholar
Royce LA, Stebbins MJ, Hanson BC, Jarboe LR (2013) The damaging effects of short chain fatty acids on Escherichia coli membranes. Appl Microbiol Biotechnol 97:8317–8327. doi:10.1007/s00253-013-5113-5
CAS
Article
PubMed
PubMed Central
Google Scholar
Liang X, Liao CY, Thompson ML, Soupir ML, Jarboe LR, Dixon PM (2016) E. coli surface properties differ between stream water and sediment environments. Front Microbiol. doi:10.3389/fmicb.2016.01732
Google Scholar
Lloubes R, Cascales E, Walburger A, Bouveret E, Lazdunski C, Bernadac A, Journet L (2001) The Tol-Pal proteins of the Escherichia coli cell envelope: an energized system required for outer membrane integrity? Res Microbiol 152:523–529. doi:10.1016/s0923-2508(01)01226-8
CAS
Article
PubMed
Google Scholar
Los DA, Murata N (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochimica Et Biophysica Acta-Biomembranes 1666:142–157. doi:10.1016/j.bbamem.2004.08.002
CAS
Article
Google Scholar
Luo LH, Seo P-S, Seo J-W, Heo S-Y, Kim D-H, Kim CH (2009) Improved ethanol tolerance in Escherichia coli by changing the cellular fatty acids composition through genetic manipulation. Biotech Lett 31:1867–1871. doi:10.1007/s10529-009-0092-4
CAS
Article
Google Scholar
Mejia R, Gomezeichelmann MC, Fernandez MS (1995) Membrane fluidity of Escherichia coli during heat shock. Biochimica Et Biophysica Acta-Biomembranes 1239:195–200. doi:10.1016/0005-2736(95)00152-s
Article
Google Scholar
Mills TY, Sandoval NR, Gill RT (2009) Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels. doi:10.1186/1754-6834-2-26
PubMed
PubMed Central
Google Scholar
Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686. doi:10.1016/j.biortech.2004.06.025
CAS
Article
PubMed
Google Scholar
Mykytczuk NCS, Trevors JT, Leduc LG, Ferroni GD (2007) Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress. Prog Biophys Mol Biol 95:60–82. doi:10.1016/j.pbiomolbio.2007.05.001
CAS
Article
PubMed
Google Scholar
Palmqvist E, Hahn-Hagerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33. doi:10.1016/s0960-8524(99)00161-3
CAS
Article
Google Scholar
Patel M, Kumar A (2016) Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil: a review. Renew Sustain Energy Rev 58:1293–1307. doi:10.1016/j.rser.2015.12.146
CAS
Article
Google Scholar
Patwardhan PR, Satrio JA, Brown RC, Shanks BH (2009) Product distribution from fast pyrolysis of glucose-based carbohydrates. J Anal Appl Pyrol. doi:10.1016/j.jaap.2009.08.007
Google Scholar
Pienkos PT, Zhang M (2009) Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose 16:743–762. doi:10.1007/s10570-009-9309-x
CAS
Article
Google Scholar
Pluschke G, Overath P (1981) Function of phospholipids in Escherichia coli—influence of changes in polar head group composition on the lipid phase-transition and characterization of a mutant containing only saturated phospholipid acyl chains. J Biol Chem 256:3207–3212
CAS
PubMed
Google Scholar
Pourbafrani M, Talebnia F, Niklasson C, Taherzadeh MJ (2007) Protective effect of encapsulation in fermentation of limonene-contained media and orange peel hydrolyzate. Int J Mol Sci 8:777–787. doi:10.3390/i8080777
CAS
Article
PubMed Central
Google Scholar
Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science (New York, NY) 344:1246843. doi:10.1126/science.1246843
Article
Google Scholar
Romeo T (1998) Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol Microbiol 29:1321–1330. doi:10.1046/j.1365-2958.1998.01021.x
CAS
Article
PubMed
Google Scholar
Romeo T, Gong M, Liu MY, Brunzinkernagel AM (1993) Identification and molecular characterization of CsrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell-size and surface-properties. J Bacteriol 175:4744–4755
CAS
Article
PubMed
PubMed Central
Google Scholar
Rosangela Di Pasqua GB, Hoskins Nikki, Edwards Mike, Ercolini Danilo, Mauriello Gianluigi (2007) Membrane toxicity of antimicrobial compounds from essential oils. Agric Food Chem 55:4863–4870. doi:10.1021/jf0636465
Article
Google Scholar
Roth BL, Poot M, Yue ST, Millard PJ (1997) Bacterial viability and antibiotic susceptibility testing with SYTOX Green nucleic acid stain. Appl Environ Microbiol 63:2421–2431
CAS
PubMed
PubMed Central
Google Scholar
Rover MR, Johnston PA, Jin T, Smith RG, Brown RC, Jarboe L (2014) Production of clean pyrolytic sugars for fermentation. Chemsuschem 7:1662–1668. doi:10.1002/cssc.201301259
CAS
Article
PubMed
Google Scholar
Rover MR, Johnston PA, Whitmer LE, Smith RG, Brown RC (2014) The effect of pyrolysis temperature on recovery of bio-oil as distinctive stage fractions. J Anal Appl Pyrol 105:262–268. doi:10.1016/j.jaap.2013.11.012
CAS
Article
Google Scholar
Royce LA, Yoon JM, Chen Y, Rickenbach E, Shanks JV, Jarboe LR (2015) Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity. Metab Eng 29:180–188. doi:10.1016/j.ymben.2015.03.014
CAS
Article
PubMed
Google Scholar
Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40:3693–3700. doi:10.1016/j.procbio.2005.04.006
CAS
Article
Google Scholar
Sherkhanov S, Korman TP, Bowie JU (2014) Improving the tolerance of Escherichia coli to medium-chain fatty acid production. Metab Eng 25:1–7. doi:10.1016/j.ymben.2014.06.003
CAS
Article
PubMed
Google Scholar
Shin H-S, Kang S-T, Nam S-Y (2000) Effect of carbohydrates to protein in EPS on sludge settling characteristics. Biotechnol Bioprocess Eng 5:460–464
CAS
Article
Google Scholar
Shokri A, Sanden AM, Larsson G (2002) Growth rate-dependent changes in Escherichia coli membrane structure and protein leakage. Appl Microbiol Biotechnol 58:386–392. doi:10.1007/s00253-001-0889-0
CAS
Article
PubMed
Google Scholar
Sikkema J, Debont JAM, Poolman B (1994) Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem 269:8022–8028
CAS
PubMed
Google Scholar
Sikkema J, Debont JAM, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222
CAS
PubMed
PubMed Central
Google Scholar
Soto ML, Dominguez H, Nunez MJ, Lema JM (1994) Enzymatic saccharification of alkali-treated sunflower hulls. Bioresour Technol 49:53–59. doi:10.1016/0960-8524(94)90173-2
CAS
Article
Google Scholar
Stevenson G, Andrianopoulos K, Hobbs M, Reeves PR (1996) Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J Bacteriol 178:4885–4893
CAS
Article
PubMed
PubMed Central
Google Scholar
Tan Z, Yoon JM, Nielsen DR, Shanks JV, Jarboe LR (2016) Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables. Metab Eng 35:105–113
CAS
Article
PubMed
Google Scholar
Jin T, Chen Y, Jarboe LR (2016) Evolutionary methods for improving the production of biorenewable fuels and chemicals. In: Trinh CT (ed) Biotechnology for biofuel production and optimization, 1st edn. Elsevier, Amsterdam, pp 265–290
Chapter
Google Scholar
Teresa Garcia-Cubero M, Gonzalez-Benito G, Indacoechea I, Coca M, Bolado S (2009) Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresour Technol 100:1608–1613. doi:10.1016/j.biortech.2008.09.012
Article
Google Scholar
Xue Y, Zhou S, Brown RC, Kelkar A, Bai X (2015) Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor. Fuel 156:40–46. doi:10.1016/j.fuel.2015.04.033
CAS
Article
Google Scholar
Yu Y, Long Y, Wu H (2016) Near-complete recovery of sugar monomers from cellulose and lignocellulosic biomass via a two-step process combining mechanochemical hydrolysis and dilute acid hydrolysis. Energy Fuels 30:1571–1578. doi:10.1021/acs.energyfuels.5b02196
CAS
Article
Google Scholar
Zaldivar J, Ingram LO (1999) Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol Bioeng 66:203–210. doi:10.1002/(sici)1097-0290(1999)66:4<203:aid-bit1>3.0.co;2-#
Zaldivar J, Martinez A, Ingram LO (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 65:24–33. doi:10.1002/(sici)1097-0290(19991005)65:1<24:aid-bit4>3.0.co;2-2
CAS
Article
PubMed
Google Scholar
Zaldivar J, Martinez A, Ingram LO (2000) Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 68:524–530. doi:10.1002/(sici)1097-0290(20000605)68:5<524:aid-bit6>3.0.co;2-t
CAS
Article
PubMed
Google Scholar