Skip to main content

Damage to the microbial cell membrane during pyrolytic sugar utilization and strategies for increasing resistance

Abstract

Lignocellulosic biomass is an appealing feedstock for the production of biorenewable fuels and chemicals, and thermochemical processing is a promising method for depolymerizing it into sugars. However, trace compounds in this pyrolytic sugar syrup are inhibitory to microbial biocatalysts. This study demonstrates that hydrophobic inhibitors damage the cell membrane of ethanologenic Escherichia coli KO11+lgk. Adaptive evolution was employed to identify design strategies for improving pyrolytic sugar tolerance and utilization. Characterization of the resulting evolved strain indicates that increased resistance to the membrane-damaging effects of the pyrolytic sugars can be attributed to a glutamine to leucine mutation at position 29 of carbon storage regulator CsrA. This single amino acid change is sufficient for decreasing EPS protein production and increasing membrane integrity when exposed to pyrolytic sugars.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Becart J, Chevalier C, Biesse J (1990) Quantitative analysis of phospholipids by HPLC with a light-scattering evaporation detector—application to raw materials for cosmetic use. HRC J High Resolut Chromatogr 13:126–129

    CAS  Article  Google Scholar 

  2. Cara C, Ruiz E, Ballesteros M, Manzanares P, Negro MJ, Castro E (2008) Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel 87:692–700. doi:10.1016/j.fuel.2007.05.008

    CAS  Article  Google Scholar 

  3. Casadei MA, Manas P, Niven G, Needs E, Mackey BM (2002) Role of membrane fluidity in pressure resistance of Escherichia coli NCTC 8164. Appl Environ Microbiol 68:5965–5972. doi:10.1128/aem.68.12.5965-5972.2002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Cascales E, Bernadac A, Gavioli M, Lazzaroni JC, Lloubes R (2002) Pal lipoprotein of Escherichia coli plays a major role in outer membrane integrity. J Bacteriol 184:754–759

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Cheville AM, Arnold KW, Buchrieser C, Cheng CM, Kaspar CW (1996) rpoS regulation of acid, heat, and salt tolerance in Escherichia coli O157:H7. Appl Environ Microbiol 62:1822–1824

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chi Z, Rover M, Jun E, Deaton M, Johnston P, Brown RC, Wen Z, Jarboe LR (2013) Overliming detoxification of pyrolytic sugar syrup for direct fermentation of levoglucosan to ethanol. Bioresour Technol 150:220–227. doi:10.1016/j.biortech.2013.09.138

    CAS  Article  PubMed  Google Scholar 

  7. Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuels 18:590–598. doi:10.1021/ef034067u

    CAS  Article  Google Scholar 

  8. Dalluge DL, Daugaard T, Johnston P, Kuzhiyil N, Wright MM, Brown RC (2014) Continuous production of sugars from pyrolysis of acid-infused lignocellulosic biomass. Green Chem 16:4144–4155. doi:10.1039/c4gc00602j

    CAS  Article  Google Scholar 

  9. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645. doi:10.1073/pnas.120163297

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Davis KM, Rover M, Brown RC, Bai XL, Wen ZY, Jarboe LR (2016) Recovery and utilization of lignin monomers as part of the biorefinery approach. Energies. doi:10.3390/en9100808

    Google Scholar 

  11. Delgenes JP, Moletta R, Navarro JM (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme Microb Technol 19:220–225. doi:10.1016/0141-0229(95)00237-5

    CAS  Article  Google Scholar 

  12. Demendoza D, Cronan JE (1983) Thermal regulation of membrane lipid fluidity in bacteria. Trends Biochem Sci 8:49–52. doi:10.1016/0968-0004(83)90388-2

    CAS  Article  Google Scholar 

  13. Denich TJ, Beaudette LA, Lee H, Trevors JT (2003) Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J Microbiol Methods 52:149–182. doi:10.1016/s0167-7012(02)00155-0

    CAS  Article  PubMed  Google Scholar 

  14. Diefenbach R, Heipieper HJ, Keweloh H (1992) The conversion of cis into trans unsaturated fatty acids in Pseudomonas putida P8—evidence for a role in the regulation of membrane fluidity. Appl Microbiol Biotechnol 38:382–387

    CAS  Article  Google Scholar 

  15. Donato MM, Antunes-Madeira MC, Jurado AS, Madeira VMC (1997) Partition of DDT and DDE into membranes and extracted lipids of Bacillus stearothermophilus. Bull Environ Contam Toxicol 59:696–701

    CAS  Article  PubMed  Google Scholar 

  16. Dunlop MJ (2011) Engineering microbes for tolerance to next-generation biofuels. Biotechnol Biofuels. doi:10.1186/1754-6834-4-32

    PubMed  PubMed Central  Google Scholar 

  17. Eboigbodin KE, Biggs CA (2008) Characterization of the extracellular polymeric substances produced by Escherichia coli using infrared spectroscopic, proteomic, and aggregation studies. Biomacromol 9:686–695. doi:10.1021/bm701043c

    CAS  Article  Google Scholar 

  18. Esteghlalian A, Hashimoto AG, Fenske JJ, Penner MH (1997) Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass. Bioresour Technol 59:129–136. doi:10.1016/s0960-8524(97)81606-9

    CAS  Article  Google Scholar 

  19. Fengel D, Wegener G (2003) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin, p 613

    Google Scholar 

  20. Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633. doi:10.1038/nrmicro2415

    CAS  PubMed  Google Scholar 

  21. Hamelinck CN, van Hooijdonk G, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410. doi:10.1016/j.biombioe.2004.09.002

    CAS  Article  Google Scholar 

  22. Heipieper HJ, Diefenbach R, Keweloh H (1992) Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl Environ Microbiol 58:1847–1852

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Heipieper HJ, Keweloh H, Rehm HJ (1991) Influence of phenols on growth and membrane-permeability of free and immobilized Escherichia coli. Appl Environ Microbiol 57:1213–1217

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Helle S, Cameron D, Lam J, White B, Duff S (2003) Effect of inhibitory compounds found in biomass hydrolysates on growth and xylose fermentation by a genetically engineered strain of S. cerevisiae. Enzyme Microb Technol 33:786–792. doi:10.1016/s0141-0229(03)00214-x

    CAS  Article  Google Scholar 

  25. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18. doi:10.1016/j.biortech.2008.05.027

    CAS  Article  PubMed  Google Scholar 

  26. Ingram LO (1976) Adaptation of membrane lipids to alcohols. J Bacteriol 125:670–678

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Jackson MB, Cronan JE (1978) Estimate of minimum amount of fluid lipid required for growth of Escherichia coli. Biochem Biophys Acta 512:472–479. doi:10.1016/0005-2736(78)90157-8

    CAS  Article  PubMed  Google Scholar 

  28. Jarboe LR, Grabar TB, Yomano LP, Shanmugan KT, Ingram LO (2007) Development of ethanologenic bacteria. In: Olsson L (ed) Biofuels. Advanced in biohcemical engineering and biotechnology, vol 108. Springer, Berlin, Heidelberg, pp 237–261. doi:10.1007/10_2007_068

  29. Jarboe LR, Liu P, Royce LA (2011) Engineering inhibitor tolerance for the production of biorenewable fuels and chemicals. Curr Opin Chem Eng 1:38–42

    CAS  Article  Google Scholar 

  30. Jorgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 1:119–134. doi:10.1002/bbb.4

    Article  Google Scholar 

  31. Kleinzeller A (1999) Charles Ernest Overton’s concept of a cell membrane. Membr Permeability 48:1–22

    Google Scholar 

  32. Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26. doi:10.1007/s00253-004-1642-2

    CAS  Article  PubMed  Google Scholar 

  33. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729. doi:10.1021/ie801542g

    CAS  Article  Google Scholar 

  34. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391. doi:10.1007/s10295-008-0327-8

    CAS  Article  PubMed  Google Scholar 

  35. Kuzhiyil N, Dalluge D, Bai X, Kim KH, Brown RC (2012) Pyrolytic sugars from cellulosic biomass. Chemsuschem 5:2228–2236. doi:10.1002/cssc.201200341

    CAS  Article  PubMed  Google Scholar 

  36. Laird DA, Brown RC, Amonette JE, Lehmann J (2009) Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioprod Biorefin 3:547–562. doi:10.1002/bbb.169

    CAS  Article  Google Scholar 

  37. Lalou S, Mantzouridou F, Paraskevopoulou A, Bugarski B, Levic S, Nedovic V (2013) Bioflavour production from orange peel hydrolysate using immobilized Saccharomyces cerevisiae. Appl Microbiol Biot 97:9397–9407. doi:10.1007/s00253-013-5181-6

    CAS  Article  Google Scholar 

  38. Langsrud S, Sundheim G (1996) Flow cytometry for rapid assessment of viability after exposure to a quaternary ammonium compound. J Appl Bacteriol 81:411–418

    CAS  PubMed  Google Scholar 

  39. Laspidou CS, Rittmann BE (2002) A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res 36:2711–2720. doi:10.1016/s0043-1354(01)00413-4

    CAS  Article  PubMed  Google Scholar 

  40. Layton DS, Ajjarapu A, Choi DW, Jarboe LR (2011) Engineering ethanologenic Escherichia coli for levoglucosan utilization. Bioresour Technol. doi:10.1016/j.biortech.2011.06.011

    PubMed  Google Scholar 

  41. Lennen RM, Kruziki MA, Kumar K, Zinkel RA, Burnum KE, Lipton MS, Hoover SW, Ranatunga DR, Wittkopp TM, Marner WD II, Pfleger BF (2011) Membrane stresses induced by overproduction of free fatty acids in Escherichia coli. Appl Environ Microbiol 77:8114–8128. doi:10.1128/aem.05421-11

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Lennen RM, Pfleger BF (2013) Modulating membrane composition alters free fatty acid tolerance in Escherichia coli. PLoS One. doi:10.1371/journal.pone.0054031

    PubMed  PubMed Central  Google Scholar 

  43. Li Q, He Y-C, Xian M, Jun G, Xu X, Yang J-M, Li L-Z (2009) Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour Technol 100:3570–3575. doi:10.1016/j.biortech.2009.02.040

    CAS  Article  PubMed  Google Scholar 

  44. Royce LA, Stebbins MJ, Hanson BC, Jarboe LR (2013) The damaging effects of short chain fatty acids on Escherichia coli membranes. Appl Microbiol Biotechnol 97:8317–8327. doi:10.1007/s00253-013-5113-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Liang X, Liao CY, Thompson ML, Soupir ML, Jarboe LR, Dixon PM (2016) E. coli surface properties differ between stream water and sediment environments. Front Microbiol. doi:10.3389/fmicb.2016.01732

    Google Scholar 

  46. Lloubes R, Cascales E, Walburger A, Bouveret E, Lazdunski C, Bernadac A, Journet L (2001) The Tol-Pal proteins of the Escherichia coli cell envelope: an energized system required for outer membrane integrity? Res Microbiol 152:523–529. doi:10.1016/s0923-2508(01)01226-8

    CAS  Article  PubMed  Google Scholar 

  47. Los DA, Murata N (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochimica Et Biophysica Acta-Biomembranes 1666:142–157. doi:10.1016/j.bbamem.2004.08.002

    CAS  Article  Google Scholar 

  48. Luo LH, Seo P-S, Seo J-W, Heo S-Y, Kim D-H, Kim CH (2009) Improved ethanol tolerance in Escherichia coli by changing the cellular fatty acids composition through genetic manipulation. Biotech Lett 31:1867–1871. doi:10.1007/s10529-009-0092-4

    CAS  Article  Google Scholar 

  49. Mejia R, Gomezeichelmann MC, Fernandez MS (1995) Membrane fluidity of Escherichia coli during heat shock. Biochimica Et Biophysica Acta-Biomembranes 1239:195–200. doi:10.1016/0005-2736(95)00152-s

    Article  Google Scholar 

  50. Mills TY, Sandoval NR, Gill RT (2009) Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels. doi:10.1186/1754-6834-2-26

    PubMed  PubMed Central  Google Scholar 

  51. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686. doi:10.1016/j.biortech.2004.06.025

    CAS  Article  PubMed  Google Scholar 

  52. Mykytczuk NCS, Trevors JT, Leduc LG, Ferroni GD (2007) Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress. Prog Biophys Mol Biol 95:60–82. doi:10.1016/j.pbiomolbio.2007.05.001

    CAS  Article  PubMed  Google Scholar 

  53. Palmqvist E, Hahn-Hagerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33. doi:10.1016/s0960-8524(99)00161-3

    CAS  Article  Google Scholar 

  54. Patel M, Kumar A (2016) Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil: a review. Renew Sustain Energy Rev 58:1293–1307. doi:10.1016/j.rser.2015.12.146

    CAS  Article  Google Scholar 

  55. Patwardhan PR, Satrio JA, Brown RC, Shanks BH (2009) Product distribution from fast pyrolysis of glucose-based carbohydrates. J Anal Appl Pyrol. doi:10.1016/j.jaap.2009.08.007

    Google Scholar 

  56. Pienkos PT, Zhang M (2009) Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose 16:743–762. doi:10.1007/s10570-009-9309-x

    CAS  Article  Google Scholar 

  57. Pluschke G, Overath P (1981) Function of phospholipids in Escherichia coli—influence of changes in polar head group composition on the lipid phase-transition and characterization of a mutant containing only saturated phospholipid acyl chains. J Biol Chem 256:3207–3212

    CAS  PubMed  Google Scholar 

  58. Pourbafrani M, Talebnia F, Niklasson C, Taherzadeh MJ (2007) Protective effect of encapsulation in fermentation of limonene-contained media and orange peel hydrolyzate. Int J Mol Sci 8:777–787. doi:10.3390/i8080777

    CAS  Article  PubMed Central  Google Scholar 

  59. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science (New York, NY) 344:1246843. doi:10.1126/science.1246843

    Article  Google Scholar 

  60. Romeo T (1998) Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol Microbiol 29:1321–1330. doi:10.1046/j.1365-2958.1998.01021.x

    CAS  Article  PubMed  Google Scholar 

  61. Romeo T, Gong M, Liu MY, Brunzinkernagel AM (1993) Identification and molecular characterization of CsrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell-size and surface-properties. J Bacteriol 175:4744–4755

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Rosangela Di Pasqua GB, Hoskins Nikki, Edwards Mike, Ercolini Danilo, Mauriello Gianluigi (2007) Membrane toxicity of antimicrobial compounds from essential oils. Agric Food Chem 55:4863–4870. doi:10.1021/jf0636465

    Article  Google Scholar 

  63. Roth BL, Poot M, Yue ST, Millard PJ (1997) Bacterial viability and antibiotic susceptibility testing with SYTOX Green nucleic acid stain. Appl Environ Microbiol 63:2421–2431

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Rover MR, Johnston PA, Jin T, Smith RG, Brown RC, Jarboe L (2014) Production of clean pyrolytic sugars for fermentation. Chemsuschem 7:1662–1668. doi:10.1002/cssc.201301259

    CAS  Article  PubMed  Google Scholar 

  65. Rover MR, Johnston PA, Whitmer LE, Smith RG, Brown RC (2014) The effect of pyrolysis temperature on recovery of bio-oil as distinctive stage fractions. J Anal Appl Pyrol 105:262–268. doi:10.1016/j.jaap.2013.11.012

    CAS  Article  Google Scholar 

  66. Royce LA, Yoon JM, Chen Y, Rickenbach E, Shanks JV, Jarboe LR (2015) Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity. Metab Eng 29:180–188. doi:10.1016/j.ymben.2015.03.014

    CAS  Article  PubMed  Google Scholar 

  67. Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40:3693–3700. doi:10.1016/j.procbio.2005.04.006

    CAS  Article  Google Scholar 

  68. Sherkhanov S, Korman TP, Bowie JU (2014) Improving the tolerance of Escherichia coli to medium-chain fatty acid production. Metab Eng 25:1–7. doi:10.1016/j.ymben.2014.06.003

    CAS  Article  PubMed  Google Scholar 

  69. Shin H-S, Kang S-T, Nam S-Y (2000) Effect of carbohydrates to protein in EPS on sludge settling characteristics. Biotechnol Bioprocess Eng 5:460–464

    CAS  Article  Google Scholar 

  70. Shokri A, Sanden AM, Larsson G (2002) Growth rate-dependent changes in Escherichia coli membrane structure and protein leakage. Appl Microbiol Biotechnol 58:386–392. doi:10.1007/s00253-001-0889-0

    CAS  Article  PubMed  Google Scholar 

  71. Sikkema J, Debont JAM, Poolman B (1994) Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem 269:8022–8028

    CAS  PubMed  Google Scholar 

  72. Sikkema J, Debont JAM, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Soto ML, Dominguez H, Nunez MJ, Lema JM (1994) Enzymatic saccharification of alkali-treated sunflower hulls. Bioresour Technol 49:53–59. doi:10.1016/0960-8524(94)90173-2

    CAS  Article  Google Scholar 

  74. Stevenson G, Andrianopoulos K, Hobbs M, Reeves PR (1996) Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J Bacteriol 178:4885–4893

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Tan Z, Yoon JM, Nielsen DR, Shanks JV, Jarboe LR (2016) Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables. Metab Eng 35:105–113

    CAS  Article  PubMed  Google Scholar 

  76. Jin T, Chen Y, Jarboe LR (2016) Evolutionary methods for improving the production of biorenewable fuels and chemicals. In: Trinh CT (ed) Biotechnology for biofuel production and optimization, 1st edn. Elsevier, Amsterdam, pp 265–290

    Chapter  Google Scholar 

  77. Teresa Garcia-Cubero M, Gonzalez-Benito G, Indacoechea I, Coca M, Bolado S (2009) Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresour Technol 100:1608–1613. doi:10.1016/j.biortech.2008.09.012

    Article  Google Scholar 

  78. Xue Y, Zhou S, Brown RC, Kelkar A, Bai X (2015) Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor. Fuel 156:40–46. doi:10.1016/j.fuel.2015.04.033

    CAS  Article  Google Scholar 

  79. Yu Y, Long Y, Wu H (2016) Near-complete recovery of sugar monomers from cellulose and lignocellulosic biomass via a two-step process combining mechanochemical hydrolysis and dilute acid hydrolysis. Energy Fuels 30:1571–1578. doi:10.1021/acs.energyfuels.5b02196

    CAS  Article  Google Scholar 

  80. Zaldivar J, Ingram LO (1999) Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol Bioeng 66:203–210. doi:10.1002/(sici)1097-0290(1999)66:4<203:aid-bit1>3.0.co;2-#

  81. Zaldivar J, Martinez A, Ingram LO (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 65:24–33. doi:10.1002/(sici)1097-0290(19991005)65:1<24:aid-bit4>3.0.co;2-2

    CAS  Article  PubMed  Google Scholar 

  82. Zaldivar J, Martinez A, Ingram LO (2000) Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 68:524–530. doi:10.1002/(sici)1097-0290(20000605)68:5<524:aid-bit6>3.0.co;2-t

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Science Foundation Energy for Sustainability program (CBET-1133319), the Iowa Energy Center (12-06) and the Iowa State University Bioeconomy Institute. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We thank Tony Romeo (University of Florida) for his helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura R. Jarboe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1263 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jin, T., Rover, M.R., Petersen, E.M. et al. Damage to the microbial cell membrane during pyrolytic sugar utilization and strategies for increasing resistance. J Ind Microbiol Biotechnol 44, 1279–1292 (2017). https://doi.org/10.1007/s10295-017-1958-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-017-1958-4

Keywords

  • Pyrolytic sugars
  • Membrane damage
  • Evolution
  • csrA
  • Extracellular polymeric substances