Skip to main content
Log in

Measurement of crude-cell-extract glycerol dehydratase activity in recombinant Escherichia coli using coupled-enzyme reactions

  • Biotechnology Methods - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Glycerol dehydratase (GDHt), which converts glycerol to 3-hydroxypropionaldehyde, is essential to the production of 1,3-propanediol (1,3-PDO) or 3-hydroxypropionic acid (3-HP). A reliable GDHt activity assay in crude-cell extract was developed. In the assay, GDHt converted 1,2-propanediol (1,2-PDO) to propionaldehyde, which was further converted to 1-propionic acid by aldehyde dehydrogenase (KGSADH) or to 1-propanol by yeast-alcohol dehydrogenase (yADH), while the NADH concentration change was monitored spectrophotometrically. Cells should be disintegrated by Bead Beater/French Press, not by chemical methods (BugBuster®/B-PER™), because the reagents significantly inactivated GDHt and coupling enzymes. Furthermore, in the assay mixture, a much higher activity of KGSADH (>200-fold) or yADH (>400-fold) than that of GDHt should have been maintained. Under optimal conditions, both KGSADH and yADH showed practically the same activity. The coupled-enzyme assay method established here should prove to be applicable to recombinant strains developed for the production of 3-HP and/or 1,3-PDO from glycerol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kumar V, Ashok S, Park S (2013) Recent advances in biological production of 3-hydroxypropionic acid. Biotechnol Adv 31:945–961

    Article  CAS  PubMed  Google Scholar 

  2. Jiang W, Wang S, Wang Y, Fang B (2016) Key enzymes catalyzing glycerol to 1,3-propanediol. Biotechnol Biofuels 9:57

    Article  PubMed  PubMed Central  Google Scholar 

  3. Toraya T (2002) Enzymatic radical catalysis: Coenzyme B12-dependent diol dehydratase. Chem Rec 2:352–366

    Article  CAS  PubMed  Google Scholar 

  4. Knietsch A, Bowien S, Whited G, Gottschalk G, Daniel R (2003) Identification and characterization of coenzyme B12-dependent glycerol dehydratase- and diol dehydratase-encoding genes from metagenomic DNA libraries derived from enrichment cultures. Appl Environ Microbiol 69:3048–3060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Toraya T (2000) Radical catalysis of B12 enzymes: structure, mechanism, inactivation, and reactivation of diol and glycerol dehydratases. Cell Mol Life Sci 57:106–127

    Article  CAS  PubMed  Google Scholar 

  6. Ashok S, Raj SM, Rathnasingh C, Park S (2011) Development of recombinant Klebsiella pneumoniae Δ dhaT strain for the co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol. Appl Microbiol Biotechnol 90:1253–1265

    Article  CAS  PubMed  Google Scholar 

  7. Durgapal M, Kumar V, Yang TH, Lee HJ, Seung D, Park S (2014) Production of 1,3-propanediol from glycerol using the newly isolated Klebsiella pneumoniae J2B. Bioresour Technol 159:223–231

    Article  CAS  PubMed  Google Scholar 

  8. Kumar V, Durgapal M, Sankaranarayanan M, Somasundar A, Rathnasingh C, Song H, Seung D, Park S (2016) Effects of mutation of 2,3-butanediol formation pathway on glycerol metabolism and 1,3-propanediol production by Klebsiella pneumoniae J2B. Bioresour Technol 214:432–440

    Article  CAS  PubMed  Google Scholar 

  9. Kumar V, Sankaranarayanan M, Durgapal M, Zhou S, Ko Y, Ashok S, Sarkar R, Park S (2013) Simultaneous production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol using resting cells of the lactate dehydrogenase-deficient recombinant Klebsiella pneumoniae overexpressing an aldehyde dehydrogenase. Bioresour Technol 135:555–563

    Article  CAS  PubMed  Google Scholar 

  10. Kumar V, Sankaranarayanan M, Jae KE, Durgapal M, Ashok S, Ko Y, Sarkar R, Park S (2012) Co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol using resting cells of recombinant Klebsiella pneumoniae J2B strain overexpressing aldehyde dehydrogenase. Appl Microbiol Biotechnol 96:373–383

    Article  CAS  PubMed  Google Scholar 

  11. Lama S, Ro SM, Seol E, Sekar BS, Ainala SK, Thangappan J, Song H, Seung D, Park S (2015) Characterization of 1,3-propanediol oxidoreductase (DhaT) from Klebsiella pneumoniae J2B. Biotechnol Bioprocess Eng 20:971–979

    Article  CAS  Google Scholar 

  12. Zhou S, Catherine C, Rathnasingh C, Somasundar A, Park S (2013) Production of 3-hydroxypropionic acid from glycerol by recombinant Pseudomonas denitrificans. Biotechnol Bioeng 110:3177–3187

    Article  CAS  PubMed  Google Scholar 

  13. Ashok S, Sankaranarayanan M, Ko Y, Jae KE, Ainala SK, Kumar V, Park S (2013) Production of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae Δ dhaT Δ yqhD which can produce vitamin B12 naturally. Biotechnol Bioeng 110:511–524

    Article  CAS  PubMed  Google Scholar 

  14. Jo JE, Raj SM, Rathnasingh C, Selvakumar E, Jung WC, Park S (2008) Cloning, expression, and characterization of an aldehyde dehydrogenase from Escherichia coli K-12 that utilizes 3-hydroxypropionaldehyde as a substrate. Appl Microbiol Biotechnol 81:51–60

    Article  CAS  PubMed  Google Scholar 

  15. Zhou S, Catherine C, Rathnasingh C, Somasundar A, Park S (2013) Production of 3-hydroxypropionic acid from glycerol by recombinant Pseudomonas denitrificans. Biotechnol Bioeng 110:3177–3187

    Article  CAS  PubMed  Google Scholar 

  16. Zhou S, Ainala SK, Seol E, Nguyen TT, Park S (2015) Inducible gene expression system by 3-hydroxypropionic acid. Biotechnol Biofuels 8:169

    Article  PubMed  PubMed Central  Google Scholar 

  17. Raj SM, Rathnasingh C, Jo J-E, Park S (2008) Production of 3-hydroxypropionic acid from glycerol by a novel recombinant Escherichia coli BL21 strain. Process Biochem 43:1440–1446

    Article  CAS  Google Scholar 

  18. Rathnasingh C, Raj SM, Jo JE, Park S (2009) Development and evaluation of efficient recombinant Escherichia coli strains for the production of 3-hydroxypropionic acid from glycerol. Biotechnol Bioeng 104:729–739

    CAS  PubMed  Google Scholar 

  19. Kang CT (2014) Analytical methods for the selected properties determination of 3-hydroxypropionaldehyde (HPA). Sky J Biochem Res 3:14–22

    Google Scholar 

  20. Toraya T, Ushio K, Fukui S, Hogenkamp PC (1977) Studies on the mechanism of the adenosylcobalamin-dependent diol dehydrase reaction by the use of analogs of the coenzyme. J Biol Chem 252:963–970

    CAS  PubMed  Google Scholar 

  21. Daniel R, Bobik TA, Gottschalk G (1998) Biochemistry of coenzyme B12-dependent glycerol and diol dehydratases and organization of the encoding genes. FEMS Microbiol Rev 22:553–566

    Article  CAS  PubMed  Google Scholar 

  22. Nemeth A, Balassy A, Sevella B (2008) Difficulties and solutions for the assays of the key enzymes of a new enzymatic glycerol bioconversion. Period Polytech Chem 52:17–22

    Article  Google Scholar 

  23. Circle SJ, Stone L, Boruff CS (1945) Acrolein determination by means of tryptophane. Ind Eng Chem Anal Ed 17:259–262

    Article  CAS  Google Scholar 

  24. Yakusheva MI, Malahov AA, Poznanskaya AA, Yakovlev VA (1974) Determination of glycerol dehydratase activity by coupled enzymic method. Anal Biochem 60:293–301

    Article  CAS  PubMed  Google Scholar 

  25. Toraya T, Krodel E, Mildvan AS, Abeles RH (1979) Role of peripheral side-chains of vitamin-B12 coenzymes in the reaction catalyzed by dioldehydrase. Biochemistry 18:417–426

    Article  CAS  PubMed  Google Scholar 

  26. Kim C, Ainala SK, Oh Y-K, Jeon B-H, Park S, Kim JR (2016) Metabolic flux change in Klebsiella pneumoniae L17 by anaerobic respiration in microbial fuel cell. Biotechnol Bioprocess Eng 21:250–260

    Article  CAS  Google Scholar 

  27. Doitomi K, Kamachi T, Toraya T, Yoshizawa K (2012) Inactivation mechanism of glycerol dehydration by diol dehydratase from combined quantum mechanical/molecular mechanical calculations. Biochemistry 51:9202–9210

    Article  CAS  PubMed  Google Scholar 

  28. Sankaranarayanan M, Ashok S, Park S (2014) Production of 3-hydroxypropionic acid from glycerol by acid tolerant Escherichia coli. J Ind Microbiol Biotechnol 41:1039–1050

    Article  CAS  PubMed  Google Scholar 

  29. Hall RH, Stern ES (1950) Acid-catalysed hydration of acrylaldehyde: kinetics of the reaction and isolation of β-hydroxypropionaldehyde, J Chem Soc 490–498

  30. Vollenweider S, Lacroix C (2004) 3-Hydroxypropionaldehyde: applications and perspectives of biotechnological production. Appl Microbiol Biotechnol 64:16–27

    Article  CAS  PubMed  Google Scholar 

  31. Bachovchin WW, Eagar Jr RG, Moore KW, Richards JH (1977) Mechanism of action of adenosylcobalamin: glycerol and other substrate analogues as substrates and inactivators for propanediol dehydratase-kinetics, stereospecificity, and mechanism. Biochemistry 16:1082–1092

    Article  CAS  PubMed  Google Scholar 

  32. Bachovchin WW, Moore KW, Richards JH (1978) Mechanism of action of adenosylcobalamin-hydrogen transfer in inactivation of diol dehydratase by glycerol. Biochemistry 17:2218–2224

    Article  CAS  PubMed  Google Scholar 

  33. Ko Y, Ashok S, Zhou S, Kumar V, Park S (2012) Aldehyde dehydrogenase activity is important to the production of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae. Process Biochem 47:1135–1143

    Article  CAS  Google Scholar 

  34. Watanabe S, Yamada M, Ohtsu I, Makino K (2007) α-Ketoglutaric Semialdehyde Dehydrogenase Isozymes Involved in Metabolic Pathways of d-Glucarate, d-Galactarate, and Hydroxy-l-proline Molecular And Metabolic Convergent Evolution. J Biol Chem 282:6685–6695

    Article  CAS  PubMed  Google Scholar 

  35. Kotrbova-Kozak A, Kotrba P, Inui M, Sajdok J, Yukawa H (2007) Transcriptionally regulated adhA gene encodes alcohol dehydrogenase required for ethanol and n-propanol utilization in Corynebacterium glutamicum R. Appl Microbiol Biotechnol 76:1347–1356

    Article  CAS  PubMed  Google Scholar 

  36. Ryzewski CN, Pietruszko R (1977) Horse liver alcohol dehydrogenase SS: Purification and characterization of the homogeneous isoenzyme. Arch Biochem Biophys 183:73–82

    Article  CAS  PubMed  Google Scholar 

  37. Honda S, Toraya T, Fukui S (1980) Insitu reactivation of glycerol-inactivated coenzyme-B12-dependent enzymes, glycerol dehydratase and diol dehydratase. J Bacteriol 143:1458–1465

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Schwartz PA, Frey PA (2007) Dioldehydrase: an essential role for potassium ion in the homolytic cleavage of the cobalt-carbon bond in adenosylcobalamin. Biochemistry 46:7293–7301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Toraya T (2000) The structure and the mechanism of action of coenzyme B12-dependent diol dehydratases. J Mol Catal B-Enzym 10:87–106

    Article  CAS  Google Scholar 

  40. Ren L-J, Feng Y, Li J, Qu L, Huang H (2013) Impact of phosphate concentration on docosahexaenoic acid production and related enzyme activities in fermentation of Schizochytrium sp. Bioprocess Biosyst Eng 36:1177–1183

    Article  CAS  PubMed  Google Scholar 

  41. Toraya T, Fukui S (1977) Immunochemical Evidence for the Difference between Coenzyme-B12-Dependent Diol Dehydratase and Glycerol Dehydratase. Eur J Biochem 76:285–289

    Article  CAS  PubMed  Google Scholar 

  42. Daniel R, Bobik TA, Gottschalk G (1998) Biochemistry of coenzyme B12-dependent glycerol and diol dehydratases and organization of the encoding genes. FEMS Microbiol Rev 22:553–566

    Article  CAS  PubMed  Google Scholar 

  43. Toraya T (2000) Radical catalysis of B12 enzymes: structure, mechanism, inactivation, and reactivation of diol and glycerol dehydratases. Cell Mol Life Sci CMLS 57:106–127

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported financially by the Advanced Biomass R&D Center (ABC) of Global Frontier Project funded by the Korean Ministry of Science, ICT and Future planning (ABC-2011-0031361). The authors are also grateful for the financial assistance provided by the BK21 Plus program at Pusan National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghoon Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankaranarayanan, M., Seol, E., Kim, Y. et al. Measurement of crude-cell-extract glycerol dehydratase activity in recombinant Escherichia coli using coupled-enzyme reactions. J Ind Microbiol Biotechnol 44, 477–488 (2017). https://doi.org/10.1007/s10295-017-1902-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-017-1902-7

Keywords

Navigation