Skip to main content
Log in

Direct bioethanol production from wheat straw using xylose/glucose co-fermentation by co-culture of two recombinant yeasts

  • Bioenergy/Biofuels/Biochemicals - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

To achieve a cost-effective bioconversion of lignocellulosic materials, a novel xylose/glucose co-fermentation process by co-culture of cellulose-utilizing recombinant Saccharomyces cerevisiae (S. cerevisiae) and xylan-utilizing recombinant Pichia pastoris (P. pastoris) was developed, in which ethanol was produced directly from wheat straw without additional hydrolytic enzymes. Recombinant S. cerevisiae coexpressing three types of cellulase and recombinant P. pastoris coexpressing two types of xylanase were constructed, respectively. All cellulases and xylanases were successfully expressed and similar extracellular activity was demonstrated. The maximum ethanol concentration of 32.6 g L−1 with the yield 0.42 g g−1 was achieved from wheat straw corresponding to 100 g L−1 of total sugar after 80 h co-fermentation, which corresponds to 82.6% of the theoretical yield. These results demonstrate that the direct and efficient ethanol production from lignocellulosic materials is accomplished by simultaneous saccharification (cellulose and hemicellulose) and co-fermentation (glucose and xylose) with the co-culture of the two recombinant yeasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Choengpanya K, Arthornthurasuk S, Wattana-amorn P, Huang WT, Plengmuankhae W, Li YK, Kongsaeree PT (2015) Cloning, expression and characterization of β-xylosidase from Aspergillus niger ASKU28. Protein Expr Purif 115:132–140

    Article  CAS  PubMed  Google Scholar 

  2. Chu BC, Lee H (2007) Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv 25(5):425–441

    Article  CAS  PubMed  Google Scholar 

  3. Cotter JL, Chinn MS, Grunden AM (2009) Ethanol and acetate production by Clostridium ljungdahlii and Clostridium autoethanogenum using resting cells. Bioprocess Biosyst Eng 32(3):369–380

    Article  CAS  PubMed  Google Scholar 

  4. Dubois M, Gilles KA, Hamilton JK (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 8:350–356

    Article  Google Scholar 

  5. Fujii N, Oki T, Sakurai A, Suye S, Sakakibara M (2001) Ethanol production from starch by immobilized Aspergillus awamori and Saccharomyces pastorianus using cellulose carriers. J Ind Microbiol Biotechnol 27(1):52–57

    Article  CAS  PubMed  Google Scholar 

  6. Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A (2004) Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70(2):1207–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fujita Y, Takahashi S, Ueda M, Tanaka A, Okada H, Morikawa Y, Kawaguchi T, Arai M, Fukuda H, Kondo A (2002) Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol 68(10):5136–5141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gietz D, St JA, Woods RA, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goncalves DL, Matsushik A, de Sales BB, Goshima T, Bon EPS, Stambuk BU (2014) Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters. Enzyme Microb Technol 63:13–20

    Article  CAS  PubMed  Google Scholar 

  10. Haan RD, Mcbride JE, Grange DCL, Lynd LR, Zyl WHV (2007) Functional expression of cellobiohydrolases in Saccharomyces cerevisiae towards one-step conversion of cellulose to ethanol. Enzyme Microb Technol 40(5):1291–1299

    Article  Google Scholar 

  11. Hahn-Hagerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74(5):937–953

    Article  PubMed  Google Scholar 

  12. Imamoglu E, Sukan FV (2013) Scale-up and kinetic modeling for bioethanol production. Bioresour Technol 144:311–320

    Article  CAS  PubMed  Google Scholar 

  13. Kang L, Wang W, Lee Y (2010) Bioconversion of kraft paper mill sludges to ethanol by SSF and SSCF. Appl Biochem Biotechnol 161(1–8):53–66

    Article  CAS  PubMed  Google Scholar 

  14. Karagöz P, Özkan M (2014) Ethanol production from wheat straw by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture in batch and continuous system. Bioresour Technol 158:286–293

    Article  PubMed  Google Scholar 

  15. Katahira S, Fujita Y, Mizuike A, Fukuda H, Kondo A (2004) Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl Environ Microbiol 70:5407–5414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Matsushika A, Watanabe S, Kodaki T, Makino K, Sawayama S (2008) Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP + -dependent xylitol dehydrogenase, and xylulokinase. J Biosci Bioeng 105(3):296–299

    Article  CAS  PubMed  Google Scholar 

  17. McBride JE, Zietsman JJ, Van Zyl WH, Lynd LR (2005) Utilization of cellobiose by recombinant glucosidase-expressing strains of Saccharomyces cerevisiae: characterization and evaluation of the sufficiency of expression. Enzyme Microb Technol 37:93–101

    Article  CAS  Google Scholar 

  18. Medve J, Karlsson J, Lee D, Tjerneld F (1998) Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes. Biotechnol Bioeng 59:621–634

    Article  CAS  PubMed  Google Scholar 

  19. Meinander NQ, Boels I, Hahn-Hagerdal B (1999) Fermentation of xylose/glucose mixtures by metabolically engineered Saccharomyces cerevisiae strains expressing XYL1 and XYL2 from Pichia stipitis with and without overexpression of TAL1. Bioresour Technol 68(1):79–87

    Article  CAS  Google Scholar 

  20. Hao ZY, Mohnen D (2014) A review of xylan and lignin biosynthesis: foundation for studying Arabidopsis irregular xylem mutants with pleiotropic phenotypes. Crit Rev Biochem Mol Biol 49(3):212–241

    Article  CAS  PubMed  Google Scholar 

  21. Miyazaki K, Irbis C, Takada J, Matsuura A (2008) An ability of isolated strains to efficiently cooperate in ethanolic fermentation of agricultural plant refuse under initially aerobic thermophilic conditions: oxygen deletion process appended to consolidated bioprocessing (CBP). Bioresour Technol 99(6):1768–1775

    Article  CAS  PubMed  Google Scholar 

  22. Olofsson K, Rudolfa A, Lide’n G (2008) Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae. J Biotechnol 134(1–2):112–120

    Article  CAS  PubMed  Google Scholar 

  23. Olson DG, McBride JE, Shaw AJ, Lynd LR (2012) Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 23(3):396–405

    Article  CAS  PubMed  Google Scholar 

  24. Rudolf A, Baudel H, Zacchi G, Hahn-Ha¨gerdal B, Lide´n G (2007) Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054. Biotechnol Bioeng 99(4):783–790

    Article  Google Scholar 

  25. Ryu S, Karim MN (2011) A whole cell biocatalyst for cellulosic ethanol production from dilute acid-pretreated corn stover hydrolyzates. Appl Microbiol Biotechnol 91(3):529–542

    Article  CAS  PubMed  Google Scholar 

  26. Sakamoto T, Hasunuma T, Hori Y, Yamada R, Kondo A (2012) Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. J Biotechnol 158(4):203–210

    Article  CAS  PubMed  Google Scholar 

  27. Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99(13):5270–5295

    Article  CAS  PubMed  Google Scholar 

  28. Lambertz C, Garvey M, Klinger J, Heesel D, Klose H, Fischer R, Commandeur U (2014) Challenges and advances in the heterologous expression of cellulolytic enzymes: a review. Biotechnol Biofuels 7:135

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shen Y, Zhang Y, Ma T, Bao X, Du F, Zhuang G, Qu Y (2008) Simultaneous saccharification and fermentation of acid-pretreated corncobs with a recombinant Saccharomyces cerevisiae expressing β-glucosidase. Bioresour Technol 99(11):5099–5103

    Article  CAS  PubMed  Google Scholar 

  30. Sluiter, A, Hames, B, Ruiz, R, Scarlata, C, Sluiter, J, Templeton, D, Crocker, D (2010). Determination of structural carbohydrates and lignin in biomass. NREL chemical analysis and testing laboratory analytical procedures: LAP-002, NREL/TP-510-42618

  31. Song Y, Lee YG, Choi IS, Lee KH, Cho EJ, Bae HJ (2013) Heterologous expression of endo-1,4–xylanase A from Schizophyllum commune in Pichia pastoris and functional characterization of the recombinant enzyme. Enzyme Microb Technol 52:170–176

    Article  CAS  PubMed  Google Scholar 

  32. Voronovsky AY, Rohulya OV, Abbas CA, Sibirny AA (2009) Development of strains of the thermotolerant yeast Hansenula polymorpha capable of alcoholic fermentation of starch and xylan. Metab Eng 11:234–242

    Article  CAS  PubMed  Google Scholar 

  33. Wang R, Koppram R, Olsson L, Franzén CJ (2014) Kinetic modeling of multi-feed simultaneous saccharification and co-fermentation of pretreated birch to ethanol. Bioresour Technol 172:303–311

    Article  CAS  PubMed  Google Scholar 

  34. Wyman CE (1996) Handbook of bioethanol: production and utilization. Taylor and Francis, Washington

    Google Scholar 

  35. Xu Q, Singh A, Himmel ME (2009) Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr Opin Biotechnol 20(3):364–371

    Article  CAS  PubMed  Google Scholar 

  36. Yadav KS, Naseeruddin S, Prashanthi GS, Sateesh L, Rao LV (2011) Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipites. Bioresour Technol 102:6473–6478

    Article  PubMed  Google Scholar 

  37. Zhang J, Shao X, Lynd LR (2009) Simultaneous saccharification and cofermentation of paper sludge to ethanol by Saccharomyces cerevisiae RWB222. Part II: investigation of discrepancies between predicted and observed performance at high solids concentration. Biotechnol Bioeng 104(5):932–938

    Article  CAS  PubMed  Google Scholar 

  38. Zhang J, Shao X, Townsend OV, Lynd LR (2009) Simultaneous saccharification and co-fermentation of paper sludge to ethanol by Saccharomyces cerevisiae RWB222- part I: kinetic modeling and parameters. Biotechnol Bioeng 104(5):920–931

    Article  CAS  PubMed  Google Scholar 

  39. Zhang J, Lynd LR (2010) Ethanol production from paper sludge by simultaneous saccharification and co-Fermentation using recombinant xylose-fermenting microorganisms. Biotechnol Bioeng 107(2):235–244

    Article  CAS  PubMed  Google Scholar 

  40. Zhou H, Cheng JS, Wang BL, Fink GR, Stephanopoulos G (2012) Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 14(6):611–622

    Article  CAS  PubMed  Google Scholar 

  41. Zhu S, Wu Y, Yu Z, Zhang X, Wang C, Yu F, Jin S, Zhao Y, Tu S, Xue Y (2005) Simultaneous saccharification and fermentation of microwave/alkali pretreated rice straw to ethanol. Biosyst Eng 92(2):229–235

    Article  Google Scholar 

  42. Zhu Y, Lee YY, Elander RT (2007) Conversion of aqueous ammonia-treated corn stover to lactic acid by simultaneous saccharification and cofermentation. Appl Biochem Biotechnol 137(1):721–738

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21546004 and 21576145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, C., Wang, L. et al. Direct bioethanol production from wheat straw using xylose/glucose co-fermentation by co-culture of two recombinant yeasts. J Ind Microbiol Biotechnol 44, 453–464 (2017). https://doi.org/10.1007/s10295-016-1893-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1893-9

Keywords

Navigation