Advertisement

In vitro reconstitution of the cyclosporine specific P450 hydroxylases using heterologous redox partner proteins

  • Yue Sun
  • Li Ma
  • Dongfei Han
  • Lei Du
  • Fengxia Qi
  • Wei Zhang
  • Jingran Sun
  • Shan Huang
  • Eung-Soo KimEmail author
  • Shengying LiEmail author
Biocatalysis - Short Communication

Abstract

The cytochrome P450 enzymes (CYPs) CYP-sb21 from Sebekia benihana and CYP-pa1 from Pseudonocardia autotrophica are able to hydroxylate the immunosuppressant cyclosporin A (CsA) in a regioselective manner, giving rise to the production of two hair-stimulating agents (with dramatically attenuated immunosuppressant activity), γ-hydroxy-N-methyl-l-Leu4-CsA (CsA-4-OH) and γ-hydroxy-N-methyl-l-Leu9-CsA (CsA-9-OH). Recently, the in vitro activity of CYP-sb21 was identified using several surrogate redox partner proteins. Herein, we reconstituted the in vitro activity of CYP-pa1 for the first time via a similar strategy. Moreover, the supporting activities of a set of ferredoxin (Fdx)/ferredoxin reductase (FdR) pairs from the cyanobacterium Synechococcus elongatus PCC 7942 were comparatively analyzed to identify the optimal redox systems for these two CsA hydroxylases. The results suggest the great value of cyanobacterial redox partner proteins for both academic research and industrial application of P450 biocatalysts.

Keywords

P450 hydroxylase Cyclosporin A Hair-stimulating agent Redox partner proteins Synechococcus elongatus 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grant Nos. NSFC 31422002 (S. Li) and 31300663 (D. Han), the Natural Science Foundation of Shandong Province, China (No. ZR2016CQ05) (L. Ma), and the National Research Foundation (NRF) of Korea (No. NRF-2014R1A2A1A11052236) (E.-S. Kim). We are grateful to the financial support from the Applied Basic Research Programs of Science and Technology of Qingdao (14-2-4-10-jch). We thank Prof. Xuefeng Lu at Qingdao Institute of Bioenergy and Biotechnology, Chinese Academy of Sciences, for providing us with the S. elongatus PCC7942 genome DNA.

References

  1. 1.
    Agematu H, Matsumoto N, Fujii Y, Kabumoto H, Doi S, Machida K, Ishikawa J, Arisawa A (2006) Hydroxylation of testosterone by bacterial cytochromes P450 using the Escherichia coli expression system. Biosci Biotechnol Biochem 70:307–311CrossRefPubMedGoogle Scholar
  2. 2.
    Ban JG, Woo MW, Lee BR, Lee MJ, Choi SS, Kim ES (2014) A novel regiospecific cyclosporin hydroxylase gene revealed through the genome mining of Pseudonocardia autotrophica. J Ind Microbiol Biotechnol 41:879–886CrossRefPubMedGoogle Scholar
  3. 3.
    Bernhardt R (2006) Cytochromes P450 as versatile biocatalysts. J Biotechnol 124:128–145CrossRefPubMedGoogle Scholar
  4. 4.
    Chun YJ, Shimada T, Sanchez-Ponce R, Martin MV, Lei L, Zhao B, Kelly SL, Waterman MR, Lamb DC, Guengerich FP (2007) Electron transport pathway for a Streptomyces cytochrome P450: cytochrome P450 105D5-catalyzed fatty acid hydroxylation in Streptomyces coelicolor A3(2). J Biol Chem 282:17486–17500CrossRefPubMedGoogle Scholar
  5. 5.
    Hernandez-Martin A, von Buhler CJ, Tieves F, Fernandez S, Ferrero M, Urlacher VB (2014) Whole-cell biotransformation with recombinant cytochrome P450 for the selective oxidation of Grundmann’s ketone. Bioorg Med Chem 22:5586–5592CrossRefPubMedGoogle Scholar
  6. 6.
    Kim SN AH, Lee CW, Lee MH, Kim JH, Kim JI, Kim SJ, Cho HS, Lee HS, Kim HJ (2004) The use of nonimmunosuppressive [γ-hydroxy-N-methyl-l-leucine4] cyclosporin derivatives for treating hair loss. Patent DE-1392224, WO02/092033 A1Google Scholar
  7. 7.
    Lee MJ, Han K, Kim ES (2011) Targeted gene disruption and functional complementation of cytochrome P450 hydroyxlase involved in cyclosporin A hydroxylation in Sebekia benihana. J Microbiol Biotechnol 21:14–19CrossRefPubMedGoogle Scholar
  8. 8.
    Lee MJ, Kim HB, Yoon YJ, Han K, Kim ES (2013) Identification of a cyclosporine-specific P450 hydroxylase gene through targeted cytochrome P450 complement (CYPome) disruption in Sebekia benihana. Appl Environ Microbiol 79:2253–2262CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Li S, Podust LM, Sherman DH (2007) Engineering and analysis of a self-sufficient biosynthetic cytochrome P450 PikC fused to the RhFRED reductase domain. J Am Chem Soc 129:12940–12941CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Liu Y, Wang C, Yan J, Zhang W, Guan W, Lu X, Li S (2014) Hydrogen peroxide-independent production of alpha-alkenes by OleTJE P450 fatty acid decarboxylase. Biotechnol Biofuels 7:28CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ma L, Du L, Chen H, Sun Y, Huang S, Zheng X, Kim ES, Li S (2015) Reconstitution of the in vitro activity of the cyclosporine-specific P450 hydroxylase from Sebekia benihana and development of a heterologous whole-cell biotransformation system. Appl Environ Microbiol 81:6268–6275CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Nelson DR (2009) The cytochrome P450 homepage. Hum Genom 4:59–65Google Scholar
  13. 13.
    Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes. II. Solubilization, purification, and properties. J Biol Chem 239:2379–2385PubMedGoogle Scholar
  14. 14.
    Podust LM, Sherman DH (2012) Diversity of P450 enzymes in the biosynthesis of natural products. Nat Prod Rep 29:1251–1266CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ruettinger RT, Fulco AJ (1981) Epoxidation of unsaturated fatty acids by a soluble cytochrome P-450-dependent system from Bacillus megaterium. J Biol Chem 256:5728–5734PubMedGoogle Scholar
  16. 16.
    Woo MW, Lee BR, Nah HJ, Choi SS, Li S, Kim ES (2015) Domain characterization of cyclosporin regio-specific hydroxylases in rare actinomycetes. J Microbiol Biotechnol 25:1634–1639CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang J, Lu X, Li JJ (2013) Conversion of fatty aldehydes into alk (a/e)nes by in vitro reconstituted cyanobacterial aldehyde-deformylating oxygenase with the cognate electron transfer system. Biotechnol Biofuels 6:86CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhang W, Liu Y, Yan J, Cao S, Bai F, Yang Y, Huang S, Yao L, Anzai Y, Kato F, Podust LM, Sherman DH, Li S (2014) New reactions and products resulting from alternative interactions between the P450 enzyme and redox partners. J Am Chem Soc 136:3640–3646CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2016

Authors and Affiliations

  • Yue Sun
    • 1
  • Li Ma
    • 2
  • Dongfei Han
    • 2
  • Lei Du
    • 2
  • Fengxia Qi
    • 2
  • Wei Zhang
    • 2
  • Jingran Sun
    • 2
  • Shan Huang
    • 1
  • Eung-Soo Kim
    • 3
    Email author
  • Shengying Li
    • 2
    Email author
  1. 1.College of Chemical EngineeringQingdao University of Science and TechnologyQingdaoChina
  2. 2.Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
  3. 3.Department of Biological EngineeringInha UniversityIncheonSouth Korea

Personalised recommendations