Skip to main content
Log in

Study of the antibacterial activity of electro-activated solutions of salts of weak organic acids on Salmonella enterica, Staphylococcus aureus and Listeria monocytogenes

  • Environmental Microbiology - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

This work assessed the antibacterial activity of electro-activated solutions of salts of weak organic acids (potassium acetate, potassium citrate and calcium lactate) on Salmonella enterica, Staphylococcus aureus and Listeria monocytogenes. This activity was compared in terms of minimal inhibitory (bactericidal) concentration to the effect of commercial acetic, citric and lactic acid at equivalent titratable acidity. Staining live/dead BacLight method was used to consider physiological state of bacteria following the evaluation of pathogenic strains during exposure to the tested solutions. The results demonstrated strong inhibitory activity of all electro-activated solutions. After 10 min of exposure to electro-activated potassium acetate, a reduction of ≥6 log CFU/ml of all bacteria was observed. The electro-activated potassium citrate demonstrated the lowest minimal inhibitory concentration. Nevertheless, its inactivation power was significantly higher than that of conjugated citric acid. Although electro-activated calcium lactate was found less effective in comparison with its conjugated acid form, after 10 min of contact with the tested pathogens, it induced a population reduction of 2.23, 2.97 and 5.57 log CFU/ml of S. aureus, L. monocytogenes and S. enterica, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lacombe A, Wu VC, Tyler S, Edwards K (2010) Antimicrobial action of the American cranberry constituents; phenolics, anthocyanins, and organic acids, against Escherichia coli O157: H7. Int J Food Microbiol 139:102–107

    Article  CAS  PubMed  Google Scholar 

  2. Mansur AR, Tango CN, Kim G-H, Oh D-H (2015) Combined effects of slightly acidic electrolyzed water and fumaric acid on the reduction of foodborne pathogens and shelf life extension of fresh pork. Food Control 47:277–284

    Article  CAS  Google Scholar 

  3. El Jaam O, Fliss I, Aider M (2016) Application of electro-activated potassium acetate and potassium citrate solutions combined with moderate heat treatment on the inactivation of Clostridium sporogenes PA 3679 spores. Innov Food Sci Emerg Technol 33:483–488

    Article  Google Scholar 

  4. Osadchenko IM, Gorlov IF, Randelina VV, Pilipenko DN, Zlobina EJE, Nikolaev DV, Struk AN, Salo AV (2008) Method of chilled storage of animal meat in: G.u.V.n.-i.s.t.i.m.-m.s.i.p.p.z. Rossel’khozakademii (Ed.) Federal service for intellectual property, patents and trademarks, Russian federation, 2008

  5. Ghate V, Kumar A, Zhou W, Yuk H-G (2015) Effect of organic acids on the photodynamic inactivation of selected foodborne pathogens using 461 nm LEDs. Food Control 57:333–340

    Article  CAS  Google Scholar 

  6. Bradley EM, Williams JB, Schilling MW, Coggins PC, Crist C, Yoder S, Campano SG (2011) Effects of sodium lactate and acetic acid derivatives on the quality and sensory characteristics of hot-boned pork sausage patties. Meat Sci 88:145–150

    Article  CAS  PubMed  Google Scholar 

  7. Ravishankar S, Zhu L (2016) Efficacy of a citric acid-based organic sanitizer against Salmonella enterica and background microflora on fresh-cut celery and leeks. SDRP J Food Sci Technol 1(2):1–7

    Google Scholar 

  8. Wang C, Chang T, Yang H, Cui M (2014) Surface physiological changes induced by lactic acid on pathogens in consideration of pKa and pH. Food Control 46:525–531

    Article  CAS  Google Scholar 

  9. Luttrell WE (2012) Acetic acid. J Chem Health Saf 19:37–38

    Article  Google Scholar 

  10. Yoo J-H, Roh S-G, Lee N-H, Yang K-M, Moon J-H (2010) A case report of a chemical burn due to the misuse of glacial acetic acid. J Plast Reconstr Aesthet Surg 63:e829–e831

    Article  PubMed  Google Scholar 

  11. Aider M, Gnatko E, Benali M, Plutakhin G, Kastyuchik A (2012) Electro-activated aqueous solutions: theory and application in the food industry and biotechnology. Innov Food Sci Emerg Technol 15:38–49

    Article  Google Scholar 

  12. Liato V, Labrie S, Viel C, Benali M, Aïder M (2015) Study of the combined effect of electro-activated solutions and heat treatment on the destruction of spores of Clostridium sporogenes and Geobacillus stearothermophilus in model solution and vegetable puree. Anaerobe 35:11–21

    Article  CAS  PubMed  Google Scholar 

  13. Gerzhova A, Mondor M, Benali M, Aider M (2015) A comparative study between the electro-activation technique and conventional extraction method on the extractability, composition and physicochemical properties of canola protein concentrates and isolates. Food Biosci 11:56–71

    Article  CAS  Google Scholar 

  14. Huang Y-R, Hung Y-C, Hsu S-Y, Huang Y-W, Hwang D-F (2008) Application of electrolyzed water in the food industry. Food Control 19:329–345

    Article  Google Scholar 

  15. Valgas C, Souza SMD, Smânia EF, Smânia A Jr (2007) Screening methods to determine antibacterial activity of natural products. Braz J Microbiol 38:369–380

    Article  Google Scholar 

  16. Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48:5–16

    Article  CAS  PubMed  Google Scholar 

  17. Boulos L, Prévost M, Barbeau B, Coallier J, Desjardins R (1999) LIVE/DEAD® BacLight™: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microbiol Methods 37:77–86

    Article  CAS  PubMed  Google Scholar 

  18. Houtsma PC, Kusters BJM, de Wit JC, Rombouts FM, Zwietering MH (1994) Special issue food safety assurance modelling growth rates of Listeria innocua as a function of lactate concentration. Int J Food Microbiol 24:113–123

    Article  CAS  PubMed  Google Scholar 

  19. Maillard JY (2002) Bacterial target sites for biocide action. J Appl Microbiol 92:16S–27S

    Article  PubMed  Google Scholar 

  20. Lund B, Wyatt G (1984) The effect of redox potential, and its interaction with sodium chloride concentration, on the probability of growth of Clostridium botulinum type E from spore inocula. Food Microbiol 1:49–65

    Article  CAS  Google Scholar 

  21. Liao LB, Chen WM, Xiao XM (2007) The generation and inactivation mechanism of oxidation–reduction potential of electrolyzed oxidizing water. J Food Eng 78:1326–1332

    Article  CAS  Google Scholar 

  22. Alakomi H-L, Skyttä E, Saarela M, Mattila-Sandholm T, Latva-Kala K, Helander I (2000) Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl Environ Microbiol 66:2001–2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Burin RCK, Silva A, Nero LA (2014) Influence of lactic acid and acetic acid on Salmonella spp. growth and expression of acid tolerance-related genes. Food Res Int 64:726–732

    Article  CAS  Google Scholar 

  24. Ibrahim SA, Yang H, Seo CW (2008) Antimicrobial activity of lactic acid and copper on growth of Salmonella and Escherichia coli O157:H7 in laboratory medium and carrot juice. Food Chem 109:137–143

    Article  CAS  PubMed  Google Scholar 

  25. Dikici A, Koluman A, Calicioglu M (2015) Comparison of effects of mild heat combined with lactic acid on Shiga toxin producing Escherichia coli O157:H7, O103, O111, O145 and O26 inoculated to spinach and soybean sprout. Food Control 50:184–189

    Article  CAS  Google Scholar 

  26. Ita PS, Hutkins RW (1991) Intracellular phi and survival of Listeria monocytogenes Scott a in tryptic soy broth containing acetic, lactic, citric, and hydrochloric acids. J Food Prot 54:15–19

    Article  Google Scholar 

  27. Fraise AP, Wilkinson MAC, Bradley CR, Oppenheim B, Moiemen N (2013) The antibacterial activity and stability of acetic acid. J Hosp Infect 84:329–331

    Article  CAS  PubMed  Google Scholar 

  28. Ryssel H, Kloeters O, Germann G, Schäfer T, Wiedemann G, Oehlbauer M (2009) The antimicrobial effect of acetic acid—an alternative to common local antiseptics? Burns 35:695–700

    Article  CAS  PubMed  Google Scholar 

  29. Nastou A, Rhoades J, Smirniotis P, Makri I, Kontominas M, Likotrafiti E (2012) Efficacy of household washing treatments for the control of Listeria monocytogenes on salad vegetables. Int J Food Microbiol 159:247–253

    Article  CAS  PubMed  Google Scholar 

  30. Ding T, Rahman SME, Oh D-H (2011) Inhibitory effects of low concentration electrolyzed water and other sanitizers against foodborne pathogens on oyster mushroom. Food Control 22:318–322

    Article  CAS  Google Scholar 

  31. McPherson LL (1993) Understanding ORP’s role in the disinfection process. Water Eng Manag 140:29–31

    Google Scholar 

  32. Decker EM (2001) The ability of direct fluorescence-based, two-colour assays to detect different physiological states of oral Streptococci. Lett Appl Microbiol 33:188–192

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to FRQNT for the financial support via the Programme de recherche en partenariat sur la préservation et l’amélioration de la valeur nutritive des aliments en lien avec la santé.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Aïder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liato, V., Labrie, S. & Aïder, M. Study of the antibacterial activity of electro-activated solutions of salts of weak organic acids on Salmonella enterica, Staphylococcus aureus and Listeria monocytogenes . J Ind Microbiol Biotechnol 44, 23–33 (2017). https://doi.org/10.1007/s10295-016-1859-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1859-y

Keywords

Navigation