Skip to main content
Log in

A whole cell biocatalyst for double oxidation of cyclooctane

  • Biocatalysis - Short Communication
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A novel whole cell cascade for double oxidation of cyclooctane to cyclooctanone was developed. The one-pot oxidation cascade requires only a minimum of reaction components: resting E. coli cells in aqueous buffered medium (=catalyst), the target substrate and oxygen as environmental friendly oxidant. Conversion of cyclooctane was catalysed with high efficiency (50% yield) and excellent selectivity (>94%) to cyclooctanone. The reported oxidation cascade represents a novel whole cell system for double oxidation of non-activated alkanes including an integrated cofactor regeneration. Notably, two alcohol dehydrogenases from Lactobacillus brevis and from Rhodococcus erythropolis with opposite cofactor selectivities and one monooxygenase P450 BM3 were produced in a coexpression system in one single host. The system represents the most efficient route with a TTN of up to 24363 being a promising process in terms of sustainability as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

References

  1. Agudo R, Reetz MT (2013) Designer cells for stereocomplementary de novo enzymatic cascade reactions based on laboratory evolution. Chem Commun 49:10914–10916

    Article  CAS  Google Scholar 

  2. Blank LM, Ebert BE, Buehler K, Buhler B (2010) Redox biocatalysis and metabolism: molecular mechanisms and metabolic network analysis. Antioxid Redox Signal 13:349–394. doi:10.1089/ars.2009.2931

    Article  CAS  PubMed  Google Scholar 

  3. Breuer M, Ditrich K, Habicher T, Hauer B, Kesseler M, Sturmer R, Zelinski T (2004) Industrial methods for the production of optically active intermediates. Angew Chem Int Ed 43:788–824. doi:10.1002/anie.200300599

    Article  CAS  Google Scholar 

  4. Caron S, Dugger RW, Ruggeri SG, Ragan JA, Ripin DH (2006) Large-scale oxidations in the pharmaceutical industry. Chem Rev 106:2943–2989. doi:10.1021/cr040679f

    Article  CAS  PubMed  Google Scholar 

  5. Crabtree RH (2001) Alkane C-H activation and functionalization with homogeneous transition metal catalysts: a century of progress—A new millennium in prospect. J Chem Soc Dalton Trans 17:2437–2450. doi:10.1039/b103147n

    Article  CAS  Google Scholar 

  6. Dhakshinamoorthy A, Alvaro M, Garcia H (2011) Atmospheric-pressure, liquid-phase, selective aerobic oxidation of alkanes catalysed by metal-organic frameworks. Chemistry 17:6256–6262. doi:10.1002/chem.201002664

    Article  CAS  PubMed  Google Scholar 

  7. Djernes KE, Padilla M, Mettry M, Young MC, Hooley RJ (2012) Hydrocarbon oxidation catalyzed by self-folded metal-coordinated cavitands. Chem Commun 48:11576–11578. doi:10.1039/c2cc36236h

    Article  CAS  Google Scholar 

  8. Fasan R, Chen MM, Crook NC, Arnold FH (2007) Engineered alkane-hydroxylating cytochrome P450 BM3 exhibiting nativelike catalytic properties. Angew Chem Int Ed 46:8414–8418

    Article  CAS  Google Scholar 

  9. Hollmann F, Arends IWCE, Buehler K, Schallmey A, Bühler B (2011) Enzyme-mediated oxidations for the chemist. Green Chem 13:226–265. doi:10.1039/c0gc00595a

    Article  CAS  Google Scholar 

  10. Kühnel K, Maurer S, Galeyeva Y, Frey W, Laschat S, Urlacher VB (2007) Hydroxylation of Dodecanoic Acid and (2R, 4R, 6R, 8R)-Tetra-methyldecanol on a Preparative Scale using an NADH-Dependent CYP102A1 Mutant. Adv Synth Catal 349:1451–1461

    Article  CAS  Google Scholar 

  11. Li XH, Chen JS, Wang X, Sun J, Antonietti M (2011) Metal-free activation of dioxygen by graphene/g-C3N4 nanocomposites: functional dyads for selective oxidation of saturated hydrocarbons. J Am Chem Soc 133:8074–8077. doi:10.1021/ja200997a

    Article  CAS  PubMed  Google Scholar 

  12. Long J, Liu H, Shijian W, Liao S, Li Y (2013) Selective oxidation of saturated hydrocarbons using Au–Pd alloy nanoparticles supported on metal–organic frameworks. ACS Catal 3:647–654

    Article  CAS  Google Scholar 

  13. Mandelli D, Chiacchio C, Kozlov YN, Shul’pin GB (2008) Hydroperoxidation of alkanes with hydrogen peroxide catalyzed by aluminium nitrate in acetonitrile. Tetrahedron Lett 49:6693–6697

    Article  CAS  Google Scholar 

  14. Müller CA, Akkapurathu B, Winkler T, Staudt S, Hummel W, Gröger H, Schwaneberg U (2013) In vitro Double Oxidation of n-Heptane with Direct Cofactor Regeneration. Adv Synth Catal 355:1787–1798

    Article  CAS  Google Scholar 

  15. Müller CA, Dennig A, Welters T, Winkler T, Ruff AJ, Hummel W, Gröger H, Schwaneberg U (2014) Whole-cell double oxidation of n-heptane. J Biotechnol 191:196–204

    Article  CAS  PubMed  Google Scholar 

  16. Neumann R, Khenkin AM (1996) Vanadium-substituted MCM-41 zeolites as catalysts for oxidation of alkanes with peroxides. Chem Commun 23:2643–2644

    Article  Google Scholar 

  17. Omura T, Sato R (1964) The Carbon monoxide-binding pigment of liver microsomes II. Solubilization, purification, and properties. J Biol Chem 239:2379–2385

    CAS  PubMed  Google Scholar 

  18. Peter S, Karich A, Ullrich R, Gröbe G, Scheibner K, Hofrichter M (2014) Enzymatic one-pot conversion of cyclohexane into cyclohexanone: Comparison of four fungal peroxygenases. J Mol Catal B Enzym 103:47–51

    Article  CAS  Google Scholar 

  19. Riesenberg D, Guthke R (1999) High-cell-density cultivation of microorganisms. Appl Microbiol Biotechnol 51:422–430

    Article  CAS  PubMed  Google Scholar 

  20. Schewe H, Holtmann D, Schrader J (2009) P450BM-3-catalyzed whole-cell biotransformation of alpha-pinene with recombinant Escherichia coli in an aqueous–organic two-phase system. Appl Microbiol Biotechnol 83:849–857. doi:10.1007/s00253-009-1917-8

    Article  CAS  PubMed  Google Scholar 

  21. Schrewe M, Julsing MK, Buhler B, Schmid A (2013) Whole-cell biocatalysis for selective and productive C–O functional group introduction and modification. Chem Soc Rev 42:6346–6377. doi:10.1039/c3cs60011d

    Article  CAS  PubMed  Google Scholar 

  22. Schrewe M, Ladkau N, Bühler B, Schmid A (2013) Direct Terminal Alkylamino-Functionalization via Multistep Biocatalysis in One Recombinant Whole-Cell Catalyst. Adv Synth Catal 355:1693–1697

    Article  CAS  Google Scholar 

  23. Sheldon RA (2008) Enzyme Catalyzed Cascade Reactions. In: Garcia-Junceda E (ed) Multi-Step Enzyme Catalysis-Biotransformations and Chemoenzymatic Synthesis, 1st edn. Wiley-VCH, Weinheim

    Google Scholar 

  24. Shilov AE, Shul’pin GB (1997) Activation of C–H bonds by metal complexes. Chem Rev 97:2879–2932

    Article  CAS  PubMed  Google Scholar 

  25. Shul’pin GB (2013) C–H functionalization: thoroughly tuning ligands at a metal ion, a chemist can greatly enhance catalyst’s activity and selectivity. Dalton Trans 42:12794–12818. doi:10.1039/c3dt51004b

    Article  CAS  PubMed  Google Scholar 

  26. Shul’pin GB, Shilov AE, Süss-Fink G (2001) Alkane oxygenation catalysed by gold complexes. Tetrahedron Lett 42:7253–7256

    Article  Google Scholar 

  27. Silva AR, Mourao T, Rocha J (2013) Oxidation of cyclohexane by transition-metal complexes with biomimetic ligands. Catal Today 203:81–86

    Article  CAS  Google Scholar 

  28. Siriphongphaew A, Pisnupong P, Wongkongkatep J, Inprakhon P, Vangnai AS, Honda K, Ohtake H, Kato J, Ogawa J, Shimizu S, Urlacher VB, Schmid RD, Pongtharangkul T (2012) Development of a whole-cell biocatalyst co-expressing P450 monooxygenase and glucose dehydrogenase for synthesis of epoxyhexane. Appl Microbiol Biotechnol 95:357–367. doi:10.1007/s00253-012-4039-7

    Article  CAS  PubMed  Google Scholar 

  29. Staudt S, Burda E, Giese C, Müller CA, Marienhagen J, Schwaneberg U, Hummel W, Drauz K, Gröger H (2013) Direct oxidation of cycloalkanes to cycloalkanones with oxygen in water. Angew Chem Int Ed 52:2359–2363. doi:10.1002/anie.201204464

    Article  CAS  Google Scholar 

  30. Straathof AJJ (2006) Quantitative Analysis of Industrial Biotransformations. In: Liese A, Seelbach K, Wandrey C (eds) Industrial Biotransformations, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  31. Tatsumi T, Nakamura M, Negishi S, Tominaga H (1990) Shape-selective oxidation of alkanes with H2O2 catalysed by titanosilicate. J Chem Soc Chem Commun 6:476–477

    Article  Google Scholar 

  32. Thellend A, Battioni P, Mansuy D (1994) Ammonium acetate as a very simple and efficient cocatalyst for manganese porphyrin-catalysed oxygenation of hydrocarbons by hydrogen peroxide. J Chem Soc Chem Commun 9:1035–1036

    Article  Google Scholar 

  33. Urlacher VB, Eiben S (2006) Cytochrome P450 monooxygenases: perspectives for synthetic application. Trends Biotechnol 24:324–330. doi:10.1016/j.tibtech.2006.05.002

    Article  CAS  PubMed  Google Scholar 

  34. Weissermel K, Arpe H-J (2003) Industrial organic chemistry, 4th edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  35. Zehentgruber D, Urlacher VB, Lütz S (2012) Studies on the enantioselective oxidation of ß-ionone with whole E. coli system expressing cytochrome P450 monooxygenase BM3. J Mol Catal B Enzym 84:62–64

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Evonik Industries and the German Federal Ministry of Education and Research (BMBF; funding number 0316044A). We also thank Till Winkler and Prof. Dr. Werner Hummel (FZ Jülich) for providing the ADH enzymes, as well as Dr. Steffen Schaffer, Dr. Oliver Thum, Dr. Markus Pötter and Michaela Hauberg (Evonik Industries, Marl, Germany) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Schwaneberg.

Additional information

C. A. Müller and A. M. Weingartner are shared authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 467 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, C.A., Weingartner, A.M., Dennig, A. et al. A whole cell biocatalyst for double oxidation of cyclooctane. J Ind Microbiol Biotechnol 43, 1641–1646 (2016). https://doi.org/10.1007/s10295-016-1844-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1844-5

Keywords

Navigation