Journal of Industrial Microbiology & Biotechnology

, Volume 43, Issue 11, pp 1561–1575 | Cite as

Genetic switches and related tools for controlling gene expression and electrical outputs of Geobacter sulfurreducens

  • Toshiyuki Ueki
  • Kelly P. Nevin
  • Trevor L. Woodard
  • Derek R. Lovley
Metabolic Engineering and Synthetic Biology - Original Paper

Abstract

Physiological studies and biotechnology applications of Geobacter species have been limited by a lack of genetic tools. Therefore, potential additional molecular strategies for controlling metabolism were explored. When the gene for citrate synthase, or acetyl-CoA transferase, was placed under the control of a LacI/IPTG regulator/inducer system, cells grew on acetate only in the presence of IPTG. The TetR/AT system could also be used to control citrate synthase gene expression and acetate metabolism. A strain that required IPTG for growth on d-lactate was constructed by placing the gene for d-lactate dehydrogenase under the control of the LacI/IPTG system. d-Lactate served as an inducer in a strain in which a d-lactate responsive promoter and transcription repressor were used to control citrate synthase expression. Iron- and potassium-responsive systems were successfully incorporated to regulate citrate synthase expression and growth on acetate. Linking the appropriate degradation tags on the citrate synthase protein made it possible to control acetate metabolism with either the endogenous ClpXP or exogenous Lon protease and tag system. The ability to control current output from Geobacter biofilms and the construction of an AND logic gate for acetate metabolism suggested that the tools developed may be applicable for biosensor and biocomputing applications.

Supplementary material

10295_2016_1836_MOESM1_ESM.pdf (437 kb)
Supplementary material 1 (PDF 436 kb)

References

  1. 1.
    Abo T, Inada T, Ogawa K, Aiba H (2000) SsrA-mediated tagging and proteolysis of LacI and its role in the regulation of lac operon. EMBO J 19:3762–3769CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Baker TA, Sauer RT (2012) ClpXP, an ATP-powered unfolding and protein-degradation machine. Biochim Biophys Acta 1823:15–28CrossRefPubMedGoogle Scholar
  3. 3.
    Benanti EL, Chivers PT (2010) Geobacter uraniireducens NikR displays a DNA binding mode distinct from other members of the NikR family. J Bacteriol 192:4327–4336CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Benenson Y (2012) Biomolecular computing systems: principles, progress and potential. Nat Rev Genet 13:455–468CrossRefPubMedGoogle Scholar
  5. 5.
    Bereza-Malcolm LT, Mann G, Franks AE (2015) Environmental sensing of heavy metals through whole cell microbial biosensors: a synthetic biology approach. ACS Synth Biol 4:535–546CrossRefPubMedGoogle Scholar
  6. 6.
    Bertram R, Hillen W (2008) The application of Tet repressor in prokaryotic gene regulation and expression. Microb Biotechnol 1:2–16PubMedGoogle Scholar
  7. 7.
    Bond DR, Mester T, Nesbo CL, Izquierdo-Lopez AV, Collart FL, Lovley DR (2005) Characterization of citrate synthase from Geobacter sulfurreducens and evidence for a family of citrate synthases similar to those of eukaryotes throughout the Geobacteraceae. Appl Environ Microbiol 71:3858–3865CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Brophy JA, Voigt CA (2014) Principles of genetic circuit design. Nat Methods 11:508–520CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Butler JE, Kaufmann F, Coppi MV, Nunez C, Lovley DR (2004) MacA, a diheme c-type cytochrome involved in Fe(III) reduction by Geobacter sulfurreducens. J Bacteriol 186:4042–4045CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Caccavo F Jr, Lonergan DJ, Lovley DR, Davis M, Stolz JF, McInerney MJ (1994) Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60:3752–3759PubMedPubMedCentralGoogle Scholar
  11. 11.
    Chan CH, Levar CE, Zacharoff L, Badalamenti JP, Bond DR (2015) Scarless genome editing and stable inducible expression vectors for Geobacter sulfurreducens. Appl Environ Microbiol 81:7178–7186CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Coppi MV, Leang C, Sandler SJ, Lovley DR (2001) Development of a genetic system for Geobacter sulfurreducens. Appl Environ Microbiol 67:3180–3187CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Coppi MV, O’Neil RA, Leang C, Kaufmann F, Methe BA, Nevin KP, Woodard TL, Liu A, Lovley DR (2007) Involvement of Geobacter sulfurreducens SfrAB in acetate metabolism rather than intracellular, respiration-linked Fe(III) citrate reduction. Microbiology 153:3572–3585CrossRefPubMedGoogle Scholar
  14. 14.
    Embree M, Qiu Y, Shieu W, Nagarajan H, O’Neil R, Lovley D, Zengler K (2014) The iron stimulon and fur regulon of Geobacter sulfurreducens and their role in energy metabolism. Appl Environ Microbiol 80:2918–2927CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fillat MF (2014) The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. Arch Biochem Biophys 546:41–52CrossRefPubMedGoogle Scholar
  16. 16.
    Golitsch F, Bucking C, Gescher J (2013) Proof of principle for an engineered microbial biosensor based on Shewanella oneidensis outer membrane protein complexes. Biosens Bioelectron 47:285–291CrossRefPubMedGoogle Scholar
  17. 17.
    Guan L, Liu Q, Li C, Zhang Y (2013) Development of a Fur-dependent and tightly regulated expression system in Escherichia coli for toxic protein synthesis. BMC Biotechnol 13:25CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gur E, Sauer RT (2008) Evolution of the ssrA degradation tag in Mycoplasma: specificity switch to a different protease. Proc Natl Acad Sci USA 105:16113–16118CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580CrossRefPubMedGoogle Scholar
  20. 20.
    Heermann R, Jung K (2010) The complexity of the ‘simple’ two-component system KdpD/KdpE in Escherichia coli. FEMS Microbiol Lett 304:97–106CrossRefPubMedGoogle Scholar
  21. 21.
    Hoch JA, Silhavy TJ (1995) Two-component signal transduction. ASM Press, Washington, DCGoogle Scholar
  22. 22.
    Holmes DE, Nevin KP, O’Neil RA, Ward JE, Adams LA, Woodard TL, Vrionis HA, Lovley DR (2005) Potential for quantifying expression of the Geobacteraceae citrate synthase gene to assess the activity of Geobacteraceae in the subsurface and on current-harvesting electrodes. Appl Environ Microbiol 71:6870–6877CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hu Y, Yang Y, Katz E, Song H (2015) Programming the quorum sensing-based AND gate in Shewanella oneidensis for logic gated-microbial fuel cells. Chem Commun (Camb) 51:4184–4187CrossRefGoogle Scholar
  24. 24.
    Huang D, Holtz WJ, Maharbiz MM (2012) A genetic bistable switch utilizing nonlinear protein degradation. J Biol Eng 6:9CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Izallalen M, Mahadevan R, Burgard A, Postier B, Didonato R Jr, Sun J, Schilling CH, Lovley DR (2008) Geobacter sulfurreducens strain engineered for increased rates of respiration. Metab Eng 10:267–275CrossRefPubMedGoogle Scholar
  26. 26.
    Katz E (2015) Biocomputing—tools, aims, perspectives. Curr Opin Biotechnol 34:202–208CrossRefPubMedGoogle Scholar
  27. 27.
    Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11:367–379CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Leang C, Coppi MV, Lovley DR (2003) OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens. J Bacteriol 185:2096–2103CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Leang C, Krushkal J, Ueki T, Puljic M, Sun J, Juarez K, Nunez C, Reguera G, DiDonato R, Postier B, Adkins RM, Lovley DR (2009) Genome-wide analysis of the RpoN regulon in Geobacter sulfurreducens. BMC Genom 10:331CrossRefGoogle Scholar
  30. 30.
    Leang C, Malvankar NS, Franks AE, Nevin KP, Lovley DR (2013) Engineering Geobacter sulfurreducens to produce a highly cohesive conductive matrix with enhanced capacity for current production. Energy Environ Sci 6:1901–1908CrossRefGoogle Scholar
  31. 31.
    Lee JW, Helmann JD (2007) Functional specialization within the Fur family of metalloregulators. Biometals 20:485–499CrossRefPubMedGoogle Scholar
  32. 32.
    Levar CE, Chan CH, Mehta-Kolte MG, Bond DR (2014) An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors. MBio 5:e02034CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lim JM, Hong MJ, Kim S, Oh DB, Kang HA, Kwon O (2008) Iron chelator-inducible expression system for Escherichia coli. J Microbiol Biotechnol 18:1357–1363PubMedGoogle Scholar
  34. 34.
    Liu X, Tremblay PL, Malvankar NS, Nevin KP, Lovley DR, Vargas M (2014) A Geobacter sulfurreducens strain expressing pseudomonas aeruginosa type IV pili localizes OmcS on pili but is deficient in Fe(III) oxide reduction and current production. Appl Environ Microbiol 80:1219–1224CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Liu Y, Wang Z, Liu J, Levar C, Edwards MJ, Babauta JT, Kennedy DW, Shi Z, Beyenal H, Bond DR, Clarke TA, Butt JN, Richardson DJ, Rosso KM, Zachara JM, Fredrickson JK, Shi L (2014) A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA. Environ Microbiol Rep 6:776–785CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lloyd JR, Leang C, Hodges Myerson AL, Coppi MV, Cuifo S, Methe B, Sandler SJ, Lovley DR (2003) Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens. Biochem J 369:153–161CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lovley DR, Ueki T, Zhang T, Malvankar NS, Shrestha PM, Flanagan KA, Aklujkar M, Butler JE, Giloteaux L, Rotaru AE, Holmes DE, Franks AE, Orellana R, Risso C, Nevin KP (2011) Geobacter: the microbe electric’s physiology, ecology, and practical applications. Adv Microb Physiol 59:1–100CrossRefPubMedGoogle Scholar
  38. 38.
    Malvankar NS, Lovley DR (2014) Microbial nanowires for bioenergy applications. Curr Opin Biotechnol 27:88–95CrossRefPubMedGoogle Scholar
  39. 39.
    Malvankar NS, Mester T, Tuominen MT, Lovley DR (2012) Supercapacitors based on c-type cytochromes using conductive nanostructured networks of living bacteria. Chem Phys Chem 13:463–468PubMedGoogle Scholar
  40. 40.
    McGinness KE, Baker TA, Sauer RT (2006) Engineering controllable protein degradation. Mol Cell 22:701–707CrossRefPubMedGoogle Scholar
  41. 41.
    Mehta T, Coppi MV, Childers SE, Lovley DR (2005) Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Appl Environ Microbiol 71:8634–8641CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Methe BA, Nelson KE, Eisen JA, Paulsen IT, Nelson W, Heidelberg JF, Wu D, Wu M, Ward N, Beanan MJ, Dodson RJ, Madupu R, Brinkac LM, Daugherty SC, DeBoy RT, Durkin AS, Gwinn M, Kolonay JF, Sullivan SA, Haft DH, Selengut J, Davidsen TM, Zafar N, White O, Tran B, Romero C, Forberger HA, Weidman J, Khouri H, Feldblyum TV, Utterback TR, Van Aken SE, Lovley DR, Fraser CM (2003) Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science 302:1967–1969CrossRefPubMedGoogle Scholar
  43. 43.
    Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  44. 44.
    Nevin KP, Kim BC, Glaven RH, Johnson JP, Woodard TL, Methe BA, Didonato RJ, Covalla SF, Franks AE, Liu A, Lovley DR (2009) Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS One 4:e5628CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Nevin KP, Richter H, Covalla SF, Johnson JP, Woodard TL, Orloff AL, Jia H, Zhang M, Lovley DR (2008) Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ Microbiol 10:2505–2514CrossRefPubMedGoogle Scholar
  46. 46.
    Ninfa AJ (2010) Use of two-component signal transduction systems in the construction of synthetic genetic networks. Curr Opin Microbiol 13:240–245CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Oberender J, Kung JW, Seifert J, von Bergen M, Boll M (2012) Identification and characterization of a succinyl-coenzyme A (CoA):benzoate CoA transferase in Geobacter metallireducens. J Bacteriol 194:2501–2508CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101CrossRefPubMedGoogle Scholar
  49. 49.
    Rodionov DA, Dubchak I, Arkin A, Alm E, Gelfand MS (2004) Reconstruction of regulatory and metabolic pathways in metal-reducing delta-proteobacteria. Genome Biol 5:R90CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Rollefson JB, Levar CE, Bond DR (2009) Identification of genes involved in biofilm formation and respiration via mini-Himar transposon mutagenesis of Geobacter sulfurreducens. J Bacteriol 191:4207–4217CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Rollefson JB, Stephen CS, Tien M, Bond DR (2011) Identification of an extracellular polysaccharide network essential for cytochrome anchoring and biofilm formation in Geobacter sulfurreducens. J Bacteriol 193:1023–1033CrossRefPubMedGoogle Scholar
  52. 52.
    Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39:1747–1763CrossRefPubMedGoogle Scholar
  53. 53.
    Sandler SJ, Clark AJ (1994) RecOR suppression of recF mutant phenotypes in Escherichia coli K-12. J Bacteriol 176:3661–3672PubMedPubMedCentralGoogle Scholar
  54. 54.
    Segura D, Mahadevan R, Juarez K, Lovley DR (2008) Computational and experimental analysis of redundancy in the central metabolism of Geobacter sulfurreducens. PLoS Comput Biol 4:e36CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: a review. Biosens Bioelectron 26:1788–1799CrossRefPubMedGoogle Scholar
  56. 56.
    TerAvest MA, Li ZJ, Angenent LT (2011) Bacteria-based biocomputing with cellular computing circuits to sense, decide, signal, and act. Energy Environ Sci 4:4907–4916CrossRefGoogle Scholar
  57. 57.
    Tremblay PL, Aklujkar M, Leang C, Nevin KP, Lovley D (2012) A genetic system for Geobacter metallireducens: role of the flagellin and pilin in the reduction of Fe(III) oxide. Environ Microbiol Rep 4:82–88CrossRefPubMedGoogle Scholar
  58. 58.
    Tront JM, Fortner JD, Plotze M, Hughes JB, Puzrin AM (2008) Microbial fuel cell biosensor for in situ assessment of microbial activity. Biosens Bioelectron 24:586–590CrossRefPubMedGoogle Scholar
  59. 59.
    Ueki T, Lovley DR (2010) Genome-wide gene regulation of biosynthesis and energy generation by a novel transcriptional repressor in Geobacter species. Nucleic Acids Res 38:810–821CrossRefPubMedGoogle Scholar
  60. 60.
    Ueki T, Lovley DR (2010) Novel regulatory cascades controlling expression of nitrogen-fixation genes in Geobacter sulfurreducens. Nucleic Acids Res 38:7485–7499CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Utsumi R, Brissette RE, Rampersaud A, Forst SA, Oosawa K, Inouye M (1989) Activation of bacterial porin gene expression by a chimeric signal transducer in response to aspartate. Science 245:1246–1249CrossRefPubMedGoogle Scholar
  62. 62.
    van der Meer JR, Belkin S (2010) Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Microbiol 8:511–522CrossRefPubMedGoogle Scholar
  63. 63.
    Vargas M, Malvankar NS, Tremblay PL, Leang C, Smith JA, Patel P, Snoeyenbos-West O, Nevin KP, Lovley DR (2013) Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. MBio 4:e00105–e00113CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Voordeckers JW, Kim BC, Izallalen M, Lovley DR (2010) Role of Geobacter sulfurreducens outer surface c-type cytochromes in reduction of soil humic acid and anthraquinone-2,6-disulfonate. Appl Environ Microbiol 76:2371–2375CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Wall ME, Hlavacek WS, Savageau MA (2004) Design of gene circuits: lessons from bacteria. Nat Rev Genet 5:34–42CrossRefPubMedGoogle Scholar
  66. 66.
    Webster DP, TerAvest MA, Doud DF, Chakravorty A, Holmes EC, Radens CM, Sureka S, Gralnick JA, Angenent LT (2014) An arsenic-specific biosensor with genetically engineered Shewanella oneidensis in a bioelectrochemical system. Biosens Bioelectron 62:320–324CrossRefPubMedGoogle Scholar
  67. 67.
    Wilson CJ, Zhan H, Swint-Kruse L, Matthews KS (2007) The lactose repressor system: paradigms for regulation, allosteric behavior and protein folding. Cell Mol Life Sci 64:3–16CrossRefPubMedGoogle Scholar
  68. 68.
    Yun J, Malvankar NS, Ueki T, Lovley DR (2015) Functional environmental proteomics: elucidating the role of a c-type cytochrome abundant during uranium bioremediation. ISME J 10:310–320CrossRefPubMedGoogle Scholar
  69. 69.
    Yun J, Ueki T, Miletto M, Lovley DR (2011) Monitoring the metabolic status of geobacter species in contaminated groundwater by quantifying key metabolic proteins with Geobacter-specific antibodies. Appl Environ Microbiol 77:4597–4602CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Zhang T, Tremblay PL, Chaurasia AK, Smith JA, Bain TS, Lovley DR (2014) Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens. Front Microbiol 5:245PubMedPubMedCentralGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2016

Authors and Affiliations

  • Toshiyuki Ueki
    • 1
  • Kelly P. Nevin
    • 1
  • Trevor L. Woodard
    • 1
  • Derek R. Lovley
    • 1
  1. 1.Department of MicrobiologyUniversity of MassachusettsAmherstUSA

Personalised recommendations