Skip to main content
Log in

Yeast factories for the production of aromatic compounds: from building blocks to plant secondary metabolites

  • Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The aromatic amino acid biosynthesis pathway is a source to a plethora of commercially relevant chemicals with very diverse industrial applications. Tremendous efforts in microbial engineering have led to the production of compounds ranging from small aromatic molecular building blocks all the way to intricate plant secondary metabolites. Particularly, the yeast Saccharomyces cerevisiae has been a great model organism given its superior capability to heterologously express long metabolic pathways, especially the ones containing cytochrome P450 enzymes. This review contains a collection of state-of-the-art metabolic engineering work devoted towards unraveling the mechanisms for enhancing the flux of carbon into the aromatic pathway. Some of the molecules discussed include the polymer precursor muconic acid, as well as important nutraceuticals (flavonoids and stilbenoids), and opium-derived drugs (benzylisoquinoline alkaloids).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adelfo Escalante A, Carmona SB, Diaz Quiroz DC, Bolivar F (2014) Current perspectives on applications of shikimic and aminoshikimic acids in pharmaceutical chemistry. Res Rep Med Chem 4:35–46

    Google Scholar 

  2. Beaudoin GA, Facchini PJ (2014) Benzylisoquinoline alkaloid biosynthesis in opium poppy. Planta 240(1):19–32

    Article  CAS  PubMed  Google Scholar 

  3. Becker J, Wittmann C (2015) Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angew Chem Int Ed Engl 54(11):3328–3350

    Article  CAS  PubMed  Google Scholar 

  4. Becker JV, Armstrong GO, van der Merwe MJ, Lambrechts MG, Vivier MA, Pretorius IS (2003) Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Res 4(1):79–85

    Article  CAS  PubMed  Google Scholar 

  5. Bender DA (2012) Amino acid metabolism, 3rd edn. Wiley-Blackwell, Chichester, West Sussex

    Book  Google Scholar 

  6. Bermejo C, Haerizadeh F, Takanaga H, Chermak D, Frommer WB (2011) Optical sensors for measuring dynamic changes of cytosolic metabolite levels in yeast. Nat Protoc 6(11):1806–1817

    Article  CAS  PubMed  Google Scholar 

  7. Borodina I, Nielsen J (2014) Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol J 9(5):609–620

    Article  CAS  PubMed  Google Scholar 

  8. Braus GH (1991) Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae: a model system for the regulation of a eukaryotic biosynthetic pathway. Microbiol Rev 55(3):349–370

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Brochado AR, Matos C, Møller BL, Hansen J, Mortensen UH, Patil KR (2010) Improved vanillin production in baker’s yeast through in silico design. Microb Cell Fact 9:84

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brown JF, Dawes IW (1990) Regulation of chorismate mutase in Saccharomyces cerevisiae. Mol Gen Genet 220(2):283–288

    Article  CAS  PubMed  Google Scholar 

  11. Brown S, Clastre M, Courdavault V, O’Connor SE (2015) De novo production of the plant-derived alkaloid strictosidine in yeast. Proc Natl Acad Sci USA 112(11):3205–3210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Buscemi N, Vandermeer B, Pandya R, Hooton N, Tjosvold L, Hartling L, Baker G, Vohra S, Klassen T (2004) Melatonin for treatment of sleep disorders. Evid Rep Technol Assess 108:1–7 (Summ)

    Google Scholar 

  13. Curran KA, Leavitt JM, Karim AS, Alper HS (2012) Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metab Eng 15:55–66

    Article  PubMed  Google Scholar 

  14. Dai Z, Liu Y, Guo J, Huang L, Zhang X (2014) Yeast synthetic biology for high-value metabolites. FEMS Yeast Res 15(1):1–11

    Google Scholar 

  15. DeLoache WC, Russ ZN, Narcross L, Gonzales AM, Martin VJ, Dueber JE (2015) An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nat Chem Biol 11(7):465–471

    Article  CAS  PubMed  Google Scholar 

  16. Du J, Yuan Y, Si T, Lian J, Zhao H (2012) Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res 40(18):e142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Elder M (2015) The global market for pain management drugs and services. Wellesley, MA

    Google Scholar 

  18. Etschmann MM, Bluemke W, Sell D, Schrader J (2002) Biotechnological production of 2-phenylethanol. Appl Microbiol Biotechnol 59(1):1–8

    Article  CAS  PubMed  Google Scholar 

  19. Facchini PJ, Bohlmann J, Covello PS, De Luca V, Mahadevan R, Page JE, Ro DK, Sensen CW, Storms R, Martin VJ (2012) Synthetic biosystems for the production of high-value plant metabolites. Trends Biotechnol 30(3):127–131

    Article  CAS  PubMed  Google Scholar 

  20. Farrow SC, Hagel JM, Beaudoin GA, Burns DC, Facchini PJ (2015) Stereochemical inversion of (S)-reticuline by a cytochrome P450 fusion in opium poppy. Nat Chem Biol 11(9):728–732

    Article  CAS  PubMed  Google Scholar 

  21. Fossati E, Ekins A, Narcross L, Zhu Y, Falgueyret JP, Beaudoin GA, Facchini PJ, Martin VJ (2014) Reconstitution of a 10-gene pathway for synthesis of the plant alkaloid dihydrosanguinarine in Saccharomyces cerevisiae. Nat Commun 5:3283

    Article  PubMed  Google Scholar 

  22. Fukuda K, Watanabe M, Asano K (1990) Altered regulation of aromatic amino acid biosynthesis in β-phenylethyl alcohol overproducing mutants of sake yeast Saccharomyces cerevisiae. Agric Biol Chem 54(12):3151–3156

    CAS  Google Scholar 

  23. Fukuda K, Watanabe M, Asano K, Ouchi K, Takasawa S (1992) Molecular breeding of a sake yeast with a mutated ARO4 gene which causes both resistance to L-fluoro-Dl-phenylalanine and increased production of β-phenethyl alcohol. Ferment and Bioeng 73(5):366–369

    Article  CAS  Google Scholar 

  24. Fukuda K, Watanabe M, Asano K, Ueda H, Ohta S (1990) Breeding of brewing yeast producing a large amount of β-phenylethyl alcohol and β-phenylethyl acetate. Agric Biol Chem 54(1):269–271

    CAS  Google Scholar 

  25. Galanie S, Thodey K, Trenchard IJ, Filsinger Interrante M, Smolke CD (2015) Complete biosynthesis of opioids in yeast. Science 349(6252):1095–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Geerlings A, Redondo F, Contin A, Memelink J, van der Heijden H, Verpoorte R (2001) Biotransformation of tryptamine and secologanin into plant terpenoid indole alkaloids by transgenic yeast. Appl Microbiol Biotechnol 56(3):420–424

    Article  CAS  PubMed  Google Scholar 

  27. Germann SM, Baallal Jacobsen SA, Schneider K, Harrison SJ, Jensen NB, Chen X, Stahlhut SG, Borodina I, Luo H, Zhu J, Maury J, Forster J (2015) Glucose-based microbial production of the hormone melatonin in yeast Saccharomyces cerevisiae. Biotechnol J. doi:10.1002/biot.201500143

    Google Scholar 

  28. Gobbi PG, Broglia C, Merli F, Dell’Olio M, Stelitano C, Iannitto E, Federico M, Berte R, Luisi D, Molica S, Cavalli C, Dezza L, Ascari E (2003) Vinblastine, bleomycin, and methotrexate chemotherapy plus irradiation for patients with early-stage, favorable Hodgkin lymphoma: the experience of the Gruppo Italiano Studio Linfomi. Cancer 98(11):2393–2401

    Article  CAS  PubMed  Google Scholar 

  29. Gold ND, Gowen CM, Lussier F-X, Cautha SC, Mahadevan R, Martin VJJ (2015) Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics. Microb Cell Fact 14:73

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hagel JM, Facchini PJ (2013) Benzylisoquinoline alkaloid metabolism: a century of discovery and a brave new world. Plant Cell Physiol 54(5):647–672

    Article  CAS  PubMed  Google Scholar 

  31. Hansen EH, Moller BL, Kock GR, Bunner CM, Kristensen C, Jensen OR, Okkels FT, Olsen CE, Motawia MS, Hansen J (2009) De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker’s yeast (Saccharomyces cerevisiae). Appl Environ Microbiol 75(9):2765–2774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hawkins KM, Smolke CD (2008) Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nat Chem Biol 4(9):564–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. He L, Li JL, Zhang JJ, Su P, Zheng SL (2003) Microwave assisted synthesis of melatonin. Synth Comm 33(5):741–747

    Article  CAS  Google Scholar 

  34. Heiskanen A, Coman V, Kostesha N, Sabourin D, Haslett N, Baronian K, Gorton L, Dufva M, Emnéus J (2013) Bioelectrochemical probing of intracellular redox processes in living yeast cells—application of redox polymer wiring in a microfluidic environment. Anal Bioanal Chem 405(11):3847–3858

    Article  CAS  PubMed  Google Scholar 

  35. Higashi Y, Smith TJ, Jez JM, Kutchan TM (2010) Crystallization and preliminary X-ray diffraction analysis of salutaridine reductase from the opium poppy Papaver somniferum. Acta Crystallogr Sect F Struct Biol Cryst Commun 66(Pt 2):163–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hinnebusch AG (1988) Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev 52(2):248–273

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hinnebusch AG, Natarajan K (2002) Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot Cell 1(1):22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jendresen CB, Stahlhut SG, Li M, Gaspar P, Siedler S, Forster J, Maury J, Borodina I, Nielsen AT (2015) Highly active and specific tyrosine ammonia-lyases from diverse origins enable enhanced production of aromatic compounds in bacteria and Saccharomyces cerevisiae. Appl Environ Microbiol 81(13):4458–4476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jiang H, Morgan JA (2004) Optimization of an in vivo plant P450 monooxygenase system in Saccharomyces cerevisiae. Biotechnol Bioeng 85(2):130–137

    Article  CAS  PubMed  Google Scholar 

  40. Jiang H, Wood KV, Morgan JA (2005) Metabolic engineering of the phenylpropanoid pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 71(6):2962–2969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jones JA, Vernacchio VR, Sinkoe AL, Collins SM, Ibrahim MH, Lachance DM, Hahn J, Koffas MA (2016) Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids. Metab Eng 35:55–63

    Article  CAS  PubMed  Google Scholar 

  42. Jullesson D, David F, Pfleger B, Nielsen J (2015) Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals. Biotechnol Adv 33(7):1395–1402

    Article  CAS  PubMed  Google Scholar 

  43. Kamei Y, Hayakawa T, Urata J, Uchiyama M, Shibui K, Kim K, Kudo Y, Okawa M (2000) Melatonin treatment for circadian rhythm sleep disorders. Psychiatry Clin Neurosci 54(3):381–382

    Article  CAS  PubMed  Google Scholar 

  44. Kim B, Cho BR, Hahn JS (2014) Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway. Biotechnol Bioeng 111(1):115–124

    Article  CAS  PubMed  Google Scholar 

  45. Koopman F, Beekwilder J, Crimi B, Van Houwelingen A, Hall Robert D, Bosch D, Van Maris Antonius J, Pronk Jack T, Daran JM (2012) De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microb Cell Fact 11(1):155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee K, Hahn JS (2013) Interplay of Aro80 and GATA activators in regulation of genes for catabolism of aromatic amino acids in Saccharomyces cerevisiae. Mol Microbiol 88(6):1120–1134

    Article  CAS  PubMed  Google Scholar 

  47. Li M, Kildegaard KR, Chen Y, Rodriguez A, Borodina I, Nielsen J (2015) De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Metab Eng 32:1–11

    Article  PubMed  Google Scholar 

  48. Lu R, Lu F, Chen J, Yu W, Huang Q, Zhang J, Xu J (2016) Production of diethyl terephthalate from biomass-derived muconic acid. Angew Chem Int Ed Engl 55(1):249–253

    Article  CAS  PubMed  Google Scholar 

  49. Luttik MAH, Vuralhan Z, Suir E, Braus GH, Pronk JT, Daran JM (2008) Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: quantification of metabolic impact. Metab Eng 10(3):141–153

    Article  CAS  PubMed  Google Scholar 

  50. Mannhaupt G, Stucka R, Pilz U, Schwarzlose C, Feldmann H (1989) Characterization of the prephenate dehydrogenase-encoding gene, TYR1, from Saccharomyces cerevisiae. Gene 85(2):303–311

    Article  CAS  PubMed  Google Scholar 

  51. Minami H, Kim JS, Ikezawa N, Takemura T, Katayama T, Kumagai H, Sato F (2008) Microbial production of plant benzylisoquinoline alkaloids. Proc Natl Acad Sci USA 105(21):7393–7398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Moxley JF, Jewett MC, Antoniewicz MR, Villas-Boas SG, Alper H, Wheeler RT, Tong L, Hinnebusch AG, Ideker T, Nielsen J, Stephanopoulos G (2009) Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p. Proc Natl Acad Sci USA 106(16):6477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Niu W, Draths KM, Frost JW (2002) Benzene-free synthesis of adipic acid. Biotechnol Prog 18(2):201–211

    Article  CAS  PubMed  Google Scholar 

  54. Oud B, Flores CL, Gancedo C, Zhang X, Trueheart J, Daran JM, Pronk JT, van Maris AJ (2012) An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae. Microb Cell Fact 11:131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pandal N (2014) Global markets for flavors and fragrances. BCC Research. Wellesley, MA

    Google Scholar 

  56. Pasquali G, Porto DD, Fett-Neto AG (2006) Metabolic engineering of cell cultures versus whole plant complexity in production of bioactive monoterpene indole alkaloids: recent progress related to old dilemma. J Biosci Bioeng 101(4):287–296

    Article  CAS  PubMed  Google Scholar 

  57. Picataggio S, Beardslee T (2012) Biological methods for preparing adipic acid. Patent number US8241879 B2

  58. Priefert H, Rabenhorst J, Steinbuchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56(3–4):296–314

    Article  CAS  PubMed  Google Scholar 

  59. Ro DK, Ehlting J, Douglas CJ (2002) Cloning, functional expression, and subcellular localization of multiple NADPH-cytochrome P450 reductases from hybrid poplar. Plant Physiol 130(4):1837–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rodriguez A, Kildegaard KR, Li M, Borodina I, Nielsen J (2015) Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metab Eng 31:181–188

    Article  CAS  PubMed  Google Scholar 

  61. Rodriguez-Naranjo MI, Torija MJ, Mas A, Cantos-Villar E, Garcia-Parrilla Mdel C (2012) Production of melatonin by Saccharomyces strains under growth and fermentation conditions. J Pineal Res 53(3):219–224

    Article  CAS  PubMed  Google Scholar 

  62. Schoch G, Goepfert S, Morant M, Hehn A, Meyer D, Ullmann P, Werck-Reichhart D (2001) CYP98A3 from Arabidopsis thaliana is a 3′-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J Biol Chem 276(39):36566

    Article  CAS  PubMed  Google Scholar 

  63. Shin SY, Jung SM, Kim MD, Han NS, Seo JH (2012) Production of resveratrol from tyrosine in metabolically engineered Saccharomyces cerevisiae. Enzyme Microb Technol 51(4):211–216

    Article  CAS  PubMed  Google Scholar 

  64. Sonawane B, Bayliss D, Valcovic L, Chen C, Rodan B, Farland W (2000) Carcinogenic effects of benzene–a status update and research needs to improve risk assessments: US EPA perspective. Environmental Protection Agency. J Toxicol Environ Health A 61(5–6):471–472

    CAS  PubMed  Google Scholar 

  65. Stark D, Kornmann H, Münch T, Sonnleitner B, Marison IW, Von Stockar U (2003) Novel type of in situ extraction: use of solvent containing microcapsules for the bioconversion of 2-phenylethanol from l-phenylalanine by Saccharomyces cerevisiae. Biotechnol Bioeng 83(4):376–385

    Article  CAS  PubMed  Google Scholar 

  66. Stark D, Münch T, Sonnleitner B, Marison IW, Stockar UV (2002) Extractive bioconversion of 2-phenylethanol from L-phenylalanine by Saccharomyces cerevisiae. Biotechnol Prog 18(3):514–523

    Article  CAS  PubMed  Google Scholar 

  67. Suástegui M, Guo W, Feng X, Shao Z (2016) Investigating strain dependency in the production of aromatic compounds in Saccharomyces cerevisiae. Biotechnol Bioeng. doi:10.1002/bit.26037

    PubMed  Google Scholar 

  68. Suastegui M, Matthiesen JE, Carraher JM, Hernandez N, Rodriguez Quiroz N, Okerlund A, Cochran EW, Shao Z, Tessonnier JP (2016) Combining metabolic engineering and electrocatalysis: application to the production of polyamides from sugar. Angew Chem Int Ed Engl 55(7):2368–2373

    Article  CAS  PubMed  Google Scholar 

  69. Sun X, Lin Y, Yuan Q, Yan Y (2015) Precursor-directed biosynthesis of 5-hydroxytryptophan using metabolically engineered E. coli. ACS Synth Biol 4(5):554–558

    Article  CAS  PubMed  Google Scholar 

  70. Sydor T, Schaffer S, Boles E (2010) Considerable increase in resveratrol production by recombinant industrial yeast strains with use of rich medium. Appl Environ Microbiol 76(10):3361–3363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Szczebara FM, Chandelier C, Villeret C, Masurel A, Bourot S, Duport C, Blanchard S, Groisillier A, Testet E, Costaglioli P, Cauet G, Degryse E, Balbuena D, Winter J, Achstetter T, Spagnoli R, Pompon D, Dumas B (2003) Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat Biotechnol 21(2):143–149

    Article  CAS  PubMed  Google Scholar 

  72. Trantas E, Panopoulos N, Ververidis F (2009) Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae. Metab Eng 11(6):355–366

    Article  CAS  PubMed  Google Scholar 

  73. Trenchard IJ, Siddiqui MS, Thodey K, Smolke CD (2015) De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast. Metab Eng 31:74–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vannelli T, Wei Qi W, Sweigard J, Gatenby AA, Sariaslani FS (2007) Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi. Metab Eng 9(2):142–151

    Article  CAS  PubMed  Google Scholar 

  75. Wang Y, Halls C, Zhang J, Matsuno M, Zhang Y, Yu O (2011) Stepwise increase of resveratrol biosynthesis in yeast Saccharomyces cerevisiae by metabolic engineering. Metab Eng 13(5):455–463

    Article  CAS  PubMed  Google Scholar 

  76. Winzer T, Kern M, King AJ, Larson TR, Teodor RI, Donninger SL, Li Y, Dowle AA, Cartwright J, Bates R, Ashford D, Thomas J, Walker C, Bowser TA, Graham IA (2015) Plant science. Morphinan biosynthesis in opium poppy requires a P450-oxidoreductase fusion protein. Science 349(6245):309–312

    Article  CAS  PubMed  Google Scholar 

  77. Zhang H, Pereira B, Li Z, Stephanopoulos G (2015) Engineering Escherichia coli coculture systems for the production of biochemical products. Proc Natl Acad Sci USA 112(27):8266–8271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang J, Wu C, Sheng J, Feng X (2016) Molecular basis of 5-hydroxytryptophan synthesis in Saccharomyces cerevisiae. Mol Biosyst. doi:10.1039/c5mb00888c

    Google Scholar 

  79. Zhu C, Byers KJ, McCord RP, Shi Z, Berger MF, Newburger DE, Saulrieta K, Smith Z, Shah MV, Radhakrishnan M, Philippakis AA, Hu Y, De Masi F, Pacek M, Rolfs A, Murthy T, Labaer J, Bulyk ML (2009) High-resolution DNA-binding specificity analysis of yeast transcription factors. Genome Res 19(4):556–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ziegler J, Brandt W, Geissler R, Facchini PJ (2009) Removal of substrate inhibition and increase in maximal velocity in the short chain dehydrogenase/reductase salutaridine reductase involved in morphine biosynthesis. J Biol Chem 284(39):26758–26767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ziegler J, Facchini PJ, Geissler R, Schmidt J, Ammer C, Kramell R, Voigtlander S, Gesell A, Pienkny S, Brandt W (2009) Evolution of morphine biosynthesis in opium poppy. Phytochemistry 70(15–16):1696–1707

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengyi Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suástegui, M., Shao, Z. Yeast factories for the production of aromatic compounds: from building blocks to plant secondary metabolites. J Ind Microbiol Biotechnol 43, 1611–1624 (2016). https://doi.org/10.1007/s10295-016-1824-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1824-9

Keywords

Navigation