Skip to main content
Log in

Functional characterization of a geraniol synthase-encoding gene from Camptotheca acuminata and its application in production of geraniol in Escherichia coli

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Geraniol synthase (GES) catalyzes the conversion of geranyl diphosphate (GPP) into geraniol, an acyclic monoterpene alcohol that has been widely used in many industries. Here we report the functional characterization of CaGES from Camptotheca acuminata, a camptothecin-producing plant, and its application in production of geraniol in Escherichia coli. The full-length cDNA of CaGES was obtained from overlap extension PCR amplification. The intact and N-terminus-truncated CaGESs were overexpressed in E. coli and purified to homogeneity. Recombinant CaGES showed the conversion activity from GPP to geraniol. To produce geraniol in E. coli using tCaGES, the biosynthetic precursor GPP should be supplied and transferred to the catalytic pocket of tCaGES. Thus, ispA(S80F), a mutant of farnesyl diphosphate (FPP) synthase, was prepared to produce GPP via the head-to-tail condensation of isoprenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). A slight increase of geraniol production was observed in the fermentation broth of the recombinant E. coli harboring tCaGES and ispA(S80F). To enhance the supply of IPP and DMAPP, the encoding genes involved in the whole mevalonic acid biosynthetic pathway were introduced to the E. coli harboring tCaGES and the ispA(S80F) and a significant increase of geraniol yield was observed. The geraniol production was enhanced to 5.85 ± 0.46 mg L−1 when another copy of ispA(S80F) was introduced to the above recombinant strain. The following optimization of medium composition, fermentation time, and addition of metal ions led to the geraniol production of 48.5 ± 0.9 mg L−1. The present study will be helpful to uncover the biosynthetic enigma of camptothecin and tCaGES will be an alternative to selectively produce geraniol in E. coli with other metabolic engineering approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alonso-Gutierrez J, Chan R, Batth TS, Adams PD, Keasling JD, Petzold CJ, Lee TS (2013) Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab Eng 19:33–41

    Article  CAS  PubMed  Google Scholar 

  2. Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthase: molecular biology and phylogenetic analysis. Proc Natl Acad Sci USA 95:4126–4133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen W, Viljoen AM (2010) Geraniol—a review of a commercially important fragrance material. S Afr J Bot 76:643–651

    Article  CAS  Google Scholar 

  4. Croteau R (1987) Biosynthesis and catabolism of monoterpenoids. Chem Rev 87:929–954

    Article  CAS  Google Scholar 

  5. Demain AL, Vaishnav P (2011) Natural products for cancer chemotherapy. Microbiol Biotechnol 4:687–699

    Article  Google Scholar 

  6. Dong L, Miettinen K, Goedbloed M, Verstappen FWA, Voster A, Jongsma MA, Memelink J, van der Krol S, Bouwmeester HJ (2013) Characterization of two geraniol synthase from Valeriana officinalis and Lippia dulcis: similar activity but difference in subcellular localization. Metab Eng 20:198–211

    Article  PubMed  Google Scholar 

  7. Eisenreich W, Rohdich F, Bacher A (2001) Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Sci 6:78–84

    Article  CAS  PubMed  Google Scholar 

  8. Fischer MJC, Meyer S, Claudel P, Bergdoll M, Karst F (2011) Metabolic engineering of monoterpene synthesis in yeast. Biotechnol Bioeng 108:1883–1892

    Article  CAS  PubMed  Google Scholar 

  9. Fischer MJC, Meyer S, Claudel P, Perrin M, Ginglinger JF, Gertz C, Masson JE, Werck-Reinhardt D, Hugueney P, Karst F (2013) Specificity of Ocimum basilicum geraniol synthase modified by its expression in different heterologous system. J Biotechnol 163:24–29

    Article  CAS  PubMed  Google Scholar 

  10. Gao Y, Honzatko RB, Peters RJ (2012) Terpenoid synthase structure: a so far incomplete view of complex catalysis. Nat Prod Rep 29:1153–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hyatt DC, Youn B, Zhao Y, Santhamma B, Coates RM, Croteau RB, Kang CH (2007) Structure of limonene synthase, a simple model for terpenoid cyclase catalysis. Proc Natl Acad Sci USA 104:5360–5365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Iijima Y, Gang DR, Fridman E, Lewinsohn E, Pichersky E (2004) Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiol 134:370–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ito M, Honda G (2007) Geraniol synthase from perilla and their taxonomical significance. Phytochemistry 68:446–453

    Article  CAS  PubMed  Google Scholar 

  14. Kutchan TM (1995) Alkaloid biosynthesis—the basis for metabolic engineering of medicinal plants. Plant Cell 7:1059–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lange BM, Ahkami A (2013) Metabolic engineering of plant monoterpenes, sesquiterpenes and diterpenes—current status and future opportunities. Plant Biotechnol J 11:169–196

    Article  CAS  PubMed  Google Scholar 

  16. Lapczynski A, Bhatia SP, Foxenberg RJ, Letizia CS, Api AM (2008) Fragrance material review on geraniol. Food Chem Toxicol 46:S160–S170

    Article  CAS  PubMed  Google Scholar 

  17. Liu J, Huang F, Wang X, Zhang M, Zheng R, Wang J, Yu D (2014) Genome-wide analysis of terpene synthase in soybean: functional characterization of GmTPS3. Gene 544:83–92

    Article  CAS  PubMed  Google Scholar 

  18. Liu J, Zhang W, Du G, Chen J, Zhou J (2013) Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae. J Biotechnol 168:446–451

    Article  CAS  PubMed  Google Scholar 

  19. Lorence A, Nessler CL (2004) Camptothecin, over four decades of surprising findings. Phytochemistry 65:2735–2749

    Article  CAS  PubMed  Google Scholar 

  20. Mahmoud SS, Croteau R (2002) Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends Plant Sci 7:366–373

    Article  CAS  PubMed  Google Scholar 

  21. Martin DM, Aubourg S, Schouwey MB, Daviet L, Schalk M, Toub O, Lund ST, Bohlmann J (2010) Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biol 10:226

    Article  PubMed  PubMed Central  Google Scholar 

  22. Masakapalli SK, Ritala A, Dong L, van der Krol AR, Oksman-Caldentey K, Ratcliffe RG, Sweetlove LJ (2014) Metabolic flux phenotype of tobacco hairy roots engineered for increase geraniol production. Phytochemistry 99:73–85

    Article  CAS  PubMed  Google Scholar 

  23. Mi J, Becher D, Lubuta P, Dany S, Tusch K, Schewe H, Buchhaupt M, Schrader J (2014) De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida. Microb Cell Fact 13:170

    Article  PubMed  PubMed Central  Google Scholar 

  24. Morrone D, Lowry L, Determan MK, Hershey DM, Xu M, Peters RJ (2010) Increasing diterpene yield with a modular metabolic engineering system in E. coli: comparison of MEV and MEP isoprenoid precursor pathway engineering. Appl Microbiol Biotechnol 85:1893–1906

    Article  CAS  PubMed  Google Scholar 

  25. Ohnuma SI, Narita K, Nakazawa T, Ishida C, Takeuchi Y, Ohto C, Nishino T (1996) A role of the amino acid residue located on the fifth position before the first aspartate-rich motif of farnesyl diphosphate synthase on determination of the final product. J Biol Chem 271:30748–30754

    Article  CAS  PubMed  Google Scholar 

  26. Panjikar S, Stoeckigt J, O’Connor S, Warzecha H (2012) The impact of structural biology on alkaloid biosynthesis research. Nat Prod Rep 29:1176–1200

    Article  CAS  PubMed  Google Scholar 

  27. Peng ZH, Hu JJ, Li HS (2010) Application of biotechnology in research of camptothecin. Prog Modern Biomed 10:3175–3177

    CAS  Google Scholar 

  28. Peralta-Yahya PP, Keasling JD (2010) Advanced biofuel production in microbes. Biotechnol J 5:147–162

    Article  CAS  PubMed  Google Scholar 

  29. Peralta-Yahya PP, Ouellet M, Chan R, Mukhopadhyay A, Keasling JD, Lee TS (2011) Identification and microbial production of a terpene-based advanced biofuel. Nat Commun 2:483. doi:10.1038/ncomms1494

    Article  PubMed  PubMed Central  Google Scholar 

  30. Qu X, Pu X, Chen F, Yang Y, Yang L, Zhang G, Luo Y (2015) Molecular cloning, heterologous expression, and functional characterization of an NADPH-cytochrome P450 reductase gene from Camptotheca acuminata, a camptothecin-producing plant. PLoS One 10:e0135397

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ritala A, Dong L, Imseng N, Seppänen-Laakso T, Vasilev N, van der Krol S, Rischer H, Maaheimo H, Virkki A, Brändli J, Schillberg S, Eibl R, Bouwmeester H, Oksman-Caldentey K (2014) Evaluation of tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) hairy roots for the production of geraniol, the first committed step in terpenoid indole alkaloid pathway. J Biotechnol 176:20–28

    Article  CAS  PubMed  Google Scholar 

  32. Sarria S, Wong B, Martín HG, Keasling JD, Peralta-Yahya P (2014) Microbial synthesis of pinene. ACS Synth Bio 3:466–475

    Article  CAS  Google Scholar 

  33. Shen SH, Liu JY, Hu JQ, Li XH, Wang LL (2011) Advances in studies on biosynthetic pathways of camptothecin and their synthases. Chin Trad Herbal Drugs 42:1862–1868

    CAS  Google Scholar 

  34. Simkin AJ, Miettinen K, Claudel P, Burlat V, Guirimand G, Courdavault V, Papon N, Meyer S, Godet S, St-Pierre B, Giglioli-Guicarc’h N, Fischer MJC, Memelink J, Clastre M (2013) Characterization of the plastidial geraniol synthase from Madagascar periwinkle which initiates the monoterpenoid branch of the alkaloid pathway in internal phloem associated parenchyma. Phytochemistry 85:36–43

    Article  CAS  PubMed  Google Scholar 

  35. Sirikantaramas S, Asano T, Sudo H, Yamazaki M, Saito K (2007) Camptothecin: therapeutic potential and biotechnology. Curr Pharm Biotechnol 8:196–202

    Article  CAS  PubMed  Google Scholar 

  36. Stöckigt J, Barleben L, Panjikar S, Loris EA (2008) 3D-Structure and function of strictosidine synthase—the key enzyme of monoterpenoid indole alkaloid biosynthesis. Plant Physiol Biochem 46:340–355

    Article  PubMed  Google Scholar 

  37. Sung PH, Huang FC, Do YY, Huang PL (2011) Functional expression of geraniol 10-hydroxylase reveals its dual function in the biosynthesis of terpenoid and phenylpropanoid. J Agric Food Chem 59:4637–4643

    Article  CAS  PubMed  Google Scholar 

  38. Vezzaro A, Krause ST, Nonis A, Ramina A, Degenhardt J, Ruperti B (2012) Isolation and characterization of terpene synthases potentially involved in flavor development of ripening olive (Olea europaea) fruits. J Plant Physiol 169:908–914

    Article  CAS  PubMed  Google Scholar 

  39. Willrodt C, David C, Cornelissen S, Bühler B, Julsing MK, Schmid A (2014) Engineering the productivity of recombinant Escherichia coli for limonene formation from glycerol in minimal media. Biotech J 9:1000–1012

    Article  CAS  Google Scholar 

  40. Yang J, Nie Q, Ren M, Feng H, Jiang X, Zheng Y, Liu M, Zhang H, Xian M (2013) Metabolic engineering of Escherichia coli for the biosynthesis of alpha-pinene. Biotechnol Biofuels 6:60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang T, Li J, Wang H, Zeng Y (2005) A geraniol-synthase gene from Cinnamomum tenuipilum. Phytochemistry 66:285–293

    Article  CAS  PubMed  Google Scholar 

  42. Zhang H, Liu Q, Cao Y, Feng X, Zheng Y, Zou H, Liu H, Yang J, Xian M (2014) Microbial production of sabinene—a new terpene-based precursor of advanced biofuel. Microb Cell Fact 13:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou J, Wang C, Yoon S, Choi E, Kim S (2014) Engineering Escherichia coli for selective geraniol production with minimized endogenous dehyrogenation. J Biotechnol 169:42–50

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support in part by the Science and Technology Project for Outstanding Youths in Life Science (KSCX2-EW-Q-6) from the Chinese Academy of Sciences, the Applied and Basic Research Program of Sichuan Province (2015JY0058), and the 21172216 project from the National Natural Science Foundation of China. All authors have agreed to submit this manuscript to the Journal of Industrial Microbiology and Biotechnology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinggang Luo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1330 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Li, W., Jiang, L. et al. Functional characterization of a geraniol synthase-encoding gene from Camptotheca acuminata and its application in production of geraniol in Escherichia coli . J Ind Microbiol Biotechnol 43, 1281–1292 (2016). https://doi.org/10.1007/s10295-016-1802-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1802-2

Keywords

Navigation