Journal of Industrial Microbiology & Biotechnology

, Volume 43, Issue 9, pp 1195–1204 | Cite as

Evaluating biochemical methane production from brewer’s spent yeast

  • Ornella Sosa-Hernández
  • Prathap Parameswaran
  • Gibrán Sidney Alemán-Nava
  • César I. Torres
  • Roberto Parra-Saldívar
Bioenergy/Biofuels/Biochemicals

Abstract

Anaerobic digestion treatment of brewer’s spent yeast (SY) is a viable option for bioenergy capture. The biochemical methane potential (BMP) assay was performed with three different samples (SY1, SY2, and SY3) and SY1 dilutions (75, 50, and 25 % on a v/v basis). Gompertz-equation parameters denoted slow degradability of SY1 with methane production rates of 14.59–4.63 mL/day and lag phases of 10.72–19.7 days. Performance and kinetic parameters were obtained with the Gompertz equation and the first-order hydrolysis model with SY2 and SY3 diluted 25 % and SY1 50 %. A SY2 25 % gave a 17 % of TCOD conversion to methane as well as shorter lag phase (<1 day). Average estimated hydrolysis constant for SY was 0.0141 (±0.003) day−1, and SY2 25 % was more appropriate for faster methane production. Methane capture and biogas composition were dependent upon the SY source, and co-digestion (or dilution) can be advantageous.

Keywords

Anaerobic digestion Biochemical methane potential (BMP) Brewer’s spent yeast 

References

  1. 1.
    Fillaudeau L, Blanpain-Avet P, Daufin G (2006) Water, wastewater and waste management in brewing industries. J Clean Prod 14:463–471. doi:10.1016/j.jclepro.2005.01.002 CrossRefGoogle Scholar
  2. 2.
    Huige NJ (2006) Brewery by-products and effluents. In: Priest FG, Stewart GC (eds) Handbook of brewing. CRC Press, Boca Raton, pp 656–713Google Scholar
  3. 3.
    Doubla A, Laminsi S, Nzali S et al (2007) Organic pollutants abatement and biodecontamination of brewery effluents by a non-thermal quenched plasma at atmospheric pressure. Chemosphere 69:332–337. doi:10.1016/j.chemosphere.2007.04.007 CrossRefPubMedGoogle Scholar
  4. 4.
    Reed G, Nagodawithana T (1991) Yeast technology, 2nd edn. Van Nostrand Reinhold, New YorkGoogle Scholar
  5. 5.
    Lee B (1996) Fundamentals of food biotechnology. VCH, New YorkGoogle Scholar
  6. 6.
    Menegazzy G, Ingledew W (2006) Heat processing of spent brewer’s yeast. J Food Sci 45:182–188CrossRefGoogle Scholar
  7. 7.
    Boulton C, Quain D (2008) Brewing yeast and fermentation. Wiley, New YorkGoogle Scholar
  8. 8.
    Olajire AA (2012) The brewing industry and environmental challenges. J Clean Prod. doi:10.1016/j.jclepro.2012.03.003 Google Scholar
  9. 9.
    Mussato SI (2009) Biotechnological potential of brewing industry by-products. In: Poonam S nee’ N, Ashok P (eds) Biotechnol. Agro-industrial residues util. Springer, Berlin, pp 313–326Google Scholar
  10. 10.
    Halasz A, Lasztity R (1991) Use of yeast biomass in food production. CRC Press, Boca RatonGoogle Scholar
  11. 11.
    Neira K, Jeison D (2010) Anaerobic co-digestion of surplus yeast and wastewater to increase energy recovery in breweries. Water Sci Technol 61:1129–1135. doi:10.2166/wst.2010.052 CrossRefPubMedGoogle Scholar
  12. 12.
    Esposito G, Frunzo L, Liotta F, et al (2012) Bio-methane potential tests to measure the biogas production from the digestion and co-digestion of complex organic substrates. The Open Environ Eng J 5:1–8CrossRefGoogle Scholar
  13. 13.
    Tambone F, Genevini P, D’Imporzano G, Adani F (2009) Assessing amendment properties of digestate by studying the organic matter composition and the degree of biological stability during the anaerobic digestion of the organic fraction of MSW. Bioresour Technol 100:3140–3142CrossRefPubMedGoogle Scholar
  14. 14.
    Bocher BT, Agler MT, Garcia ML et al (2008) Anaerobic digestion of secondary residuals from an anaerobic bioreactor at a brewery to enhance bioenergy generation. J Ind Microbiol Biotechnol 35:321–329. doi:10.1007/s10295-007-0295-4 CrossRefPubMedGoogle Scholar
  15. 15.
    Zupančič GD, Skrjanec I, Logar RM (2012) Anaerobic co-digestion of excess brewery yeast in a granular biomass reactor to enhance the production of biomethane. Bioresour Technol 124:328–337. doi:10.1016/j.biortech.2012.08.064 CrossRefPubMedGoogle Scholar
  16. 16.
    Labatut RA, Angenent LT, Scott NR (2011) Biochemical methane potential and biodegradability of complex organic substrates. Bioresour Technol 102:2255–2264. doi:10.1016/j.biortech.2010.10.035 CrossRefPubMedGoogle Scholar
  17. 17.
    Flythe MD (2009) The antimicrobial effects of hops (Humulus lupulus L.) on ruminal hyper ammonia-producing bacteria. Lett Appl Microbiol 48:712–717. doi:10.1111/j.1472-765X.2009.02600.x PubMedGoogle Scholar
  18. 18.
    Four Peaks Brewing Co. The beers that made us who we are todayGoogle Scholar
  19. 19.
    American Public Health Association APHA (1998) Standard methods for the examination of water and wastewater, 19th edn. APHA-AWWA-WEF, Washington, DCGoogle Scholar
  20. 20.
    DuBois M, Gilles KA, Hamilton JK et al (1956) Colorimetric method for determination of sugar and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  21. 21.
    Lee H-S, Parameswaran P, Kato-Marcus A et al (2008) Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Res 42:1501–1510. doi:10.1016/j.watres.2007.10.036 CrossRefPubMedGoogle Scholar
  22. 22.
    Angelidaki I, Alves M, Bolzonella D et al (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 59:927–934. doi:10.2166/wst.2009.040 CrossRefPubMedGoogle Scholar
  23. 23.
    Owen WF, Stuckey DC, Healy JB (1979) Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res 13:485–492. doi:10.1016/0043-1354(79)90043-5 CrossRefGoogle Scholar
  24. 24.
    Donoso-Bravo A, Pérez-Elvira SI, Fdz-Polanco F (2010) Application of simplified models for anaerobic biodegradability tests. Evaluation of pre-treatment processes. Chem Eng J 160:607–614. doi:10.1016/j.cej.2010.03.082 CrossRefGoogle Scholar
  25. 25.
    Altaş L (2009) Inhibitory effect of heavy metals on methane-producing anaerobic granular sludge. J Hazard Mater 162:1551–1556. doi:10.1016/j.jhazmat.2008.06.048 CrossRefPubMedGoogle Scholar
  26. 26.
    Lay JJ, Li YY, Noike T (1996) Effect of moisture content and chemical nature on methane fermentation characteristics of municipal solid wastes. J Environ Syst Eng. doi:10.2208/jscej.1996.552_101
  27. 27.
    Wen TC, Cheng SS, Lay J (1994) A kinetic model of a recirculated upflow anaerobic sludge blanket treating phenolic wastewater. Water Environ Resour 66:794–799CrossRefGoogle Scholar
  28. 28.
    Parameswaran P, Rittmann BE (2012) Feasibility of anaerobic co-digestion of pig waste and paper sludge. Bioresour Technol 124:163–168. doi:10.1016/j.biortech.2012.07.116 CrossRefPubMedGoogle Scholar
  29. 29.
    Lindeburg M (2012) Chemical engineering reference manual, 7th edn. Professional Publications, BelmontGoogle Scholar
  30. 30.
    Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860. doi:10.1007/s00253-009-2246-7 CrossRefPubMedGoogle Scholar
  31. 31.
    Angelidaki I, Sanders W (2004) Assessment of the anaerobic biodegradability of macropollutants. Rev Environ Sci Bio|Technol 3:117–129. doi: 10.1007/s11157-004-2502-3
  32. 32.
    Raposo F, Banks CJ, Siegert I et al (2006) Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Process Biochem 41:1444–1450. doi:10.1016/j.procbio.2006.01.012 CrossRefGoogle Scholar
  33. 33.
    Kramer B, Thielmann J, Hickisch A et al (2014) Antimicrobial activity of hop extracts against foodborne pathogens for meat applications. J Appl Microbiol 118:648–657. doi:10.1111/jam.12717 CrossRefGoogle Scholar
  34. 34.
    Shotipruk A, Kittianong P, Supthantharica M, Muangnapoh C (2005) Application of rotary microfiltration in debittering process of spent brewer’s yeast. Bioresour Technol 96:1851–1859CrossRefPubMedGoogle Scholar
  35. 35.
    Rittmann BE, McCarty PL (2001) Environmental biotechnology: principles and applications. McGraw Hill, BostonGoogle Scholar
  36. 36.
    Gong YL, Liao XD, Liang JB et al (2013) Saccharomyces cerevisiae live cells decreased in vitro methane production in intestinal content of pigs. Asian-Australas J Anim Sci 26:856–863. doi:10.5713/ajas.2012.12663 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wang LK, Ivanov V, Tay J-H, Hung Y-T (2010) Environmental biotechnology, vol 10. Springer, BerlinGoogle Scholar
  38. 38.
    Gutiérrez-García G de J, Moncada-Fernández I, Meza-Montenegro MM, et al (2012) Biogás: una alternativa ecológica para la producción de energía. Ide@as CONCYTEG 7:881–894Google Scholar
  39. 39.
    Mottet A, Francois E, Latrille E et al (2010) Estimating anaerobic biodegradability indicators for waste activated sludge. Chem Eng J 160:488–496. doi:10.1016/j.cej.2010.03.059 CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2016

Authors and Affiliations

  • Ornella Sosa-Hernández
    • 1
  • Prathap Parameswaran
    • 2
    • 4
  • Gibrán Sidney Alemán-Nava
    • 1
  • César I. Torres
    • 3
  • Roberto Parra-Saldívar
    • 1
  1. 1.Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus MonterreyMonterreyMexico
  2. 2.Swette Center for Environmental Biotechnology, Biodesign InstituteArizona State UniversityTempeUSA
  3. 3.School for Engineering of Matter, Transport and EnergyArizona State UniversityTempeUSA
  4. 4.Department of Civil EngineeringKansas State UniversityManhattanUSA

Personalised recommendations