Skip to main content
Log in

A novel chimeric prophage vB_LdeS-phiJB from commercial Lactobacillus delbrueckii subsp. bulgaricus

  • Genetics and Molecular Biology of Industrial Organisms
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Prophage vB_LdeS-phiJB (phiJB) was induced by mitomycin C and UV radiation from the Lactobacillus delbrueckii subsp. bulgaricus SDMCC050201 isolated from a Chinese yoghurt sample. It has an isometric head and a non-contractile tail with 36,969 bp linear double-stranded DNA genome, which is classified into the group a of Lb. delbrueckii phages. The genome of phiJB is highly modular with functionally related genes clustered together. Unexpectedly, there is no similarity of its DNA replication module to any phages that have been reported, while it consists of open-reading frames homologous to the proteins of Lactobacillus strains. Comparative genomic analysis indicated that its late gene clusters, integration/lysogeny modules and DNA replication module derived from different evolutionary ancestors and integrated into a chimera. Our results revealed a novel chimeric phage of commercial Lb. delbrueckii and will broaden the knowledge of phage diversity in the dairy industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akhter S, Aziz RK, Edwards RA (2012) PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. Nucleic Acids Res 40:e126. doi:10.1093/nar/gks406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aleksandrova V, Ishlimova D, Urshev Z (2013) Classification of Lactobacillus delbrueckii ssp. bulgaricus phage Gb1 into group “b” Lactobacillus delbrueckii bacteriophages based on its partial genome sequencing. Bulg J Agric Sci 19(Supplement 2):90–93

    Google Scholar 

  3. Auad L, Räisänen L, Raya RR, Alatossava T (1999) Physical mapping and partial genetic characterization of the Lactobacillus delbrueckii subsp. bulgaricus bacteriophage lb539. Arch Virol 144:1503–1512

    Article  CAS  PubMed  Google Scholar 

  4. Aziz RK, Edwards RA, Taylor WW, Low DE, McGeer A, Kotb M (2005) Mosaic prophages with horizontally acquired genes account for the emergence and diversification of the globally disseminated M1T1 clone of Streptococcus pyogenes. J Bacteriol 187:3311–3318. doi:10.1128/JB.187.10.3311-3318.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero D, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712. doi:10.1126/science.1138140

    Article  CAS  PubMed  Google Scholar 

  6. Baugher JL, Durmaz E, Klaenhammer TR (2014) Spontaneously induced prophage in Lactobacillus gasseri contribute to horizontal gene transfer. Appl Environ Microbiol 80:3508–3517. doi:10.1128/AEM.04092-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brüssow H, Desiere F (2001) Comparative phage genomics and the evolution of Siphoviridae: insights from dairy phages. Mol Microbiol 39(2):213–222. doi:10.1046/j.1365-2958.2001.02228.x

    Article  PubMed  Google Scholar 

  8. Canchaya C, Proux C, Fournous G, Bruttin A, Brüssow H (2003) Prophage genomics. Microbiol Mol Biol Rev 67:238–276. doi:10.1128/MMBR.67.2.238-276.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Casey E, Mahony J, O’Connell-Motherway M, Bottacini F, Cornelissen A, Neve H, Heller KJ, Noben J-P, Bello FD, van Sinderen D (2014) Molecular characterization of three Lactobacillus delbrueckii subsp. bulgaricus phages. Appl Environ Microbiol 80:5623–5635. doi:10.1128/AEM.01268-14

    Article  PubMed  PubMed Central  Google Scholar 

  10. Casey E, Mahony J, Neve H, Noben JP, Bello FD, van Sinderen D (2015) Novel phage group infecting Lactobacillus delbrueckii subsp. lactis, as revealed by genomic and proteomic analysis of bacteriophage Ldl1. Appl Environ Microbiol 81:1319–1326. doi:10.1128/AEM.03413-14

    Article  PubMed  PubMed Central  Google Scholar 

  11. Casjens S (2003) Prophages and bacterial genomics: what have we learned so far? Mol Microbiol 49:277–300. doi:10.1046/j.1365-2958.2003.03580.x

    Article  CAS  PubMed  Google Scholar 

  12. Darling ACE, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403. doi:10.1101/gr.2289704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dupont L, Boizet-Bonhoure B, Coddeville M, Auvray F, Ritzenthaler P (1995) Characterization of genetic elements required for site-specific integration of Lactobacillus delbrueckii subsp. bulgaricus bacteriophage mv4 and construction of an integration-proficient vector for Lactobacillus plantarum. J Bacteriol 177:586–595

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Durmaz E, Miller MJ, Azcarate-Peril MA, Toon SP, Klaenhammer TR (2008) Genome sequence and characteristics of Lrm1, a prophage from industrial Lactobacillus rhamnosus strain M1. Appl Environ Microbiol 74:4601–4609. doi:10.1128/AEM.00010-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. García P, Ladero V, Alonso JC, Suárez JE (1999) Cooperative interaction of CI protein regulated lysogeny of Lactobacillus casei by bacteriophage A2. J Virol 73:3920–3929

    PubMed  PubMed Central  Google Scholar 

  16. Garneau JE, Moineau S (2011) Bacteriophages of lactic acid bacteria and their impact on milk fermentations. Microb Cell Fact 10(Suppl 1):S20. doi:10.1186/1475-2859-10-S1-S20

    Article  PubMed  PubMed Central  Google Scholar 

  17. Guglielmotti D, Marcó MB, Vinderola C, de Los Reyes Gavilán C, Reinheimer J, Quiberoni A (2007) Spontaneous Lactobacillus delbrueckii phage-resistant mutants with acquired bile tolerance. Int J Food Microbiol 119:236–242. doi:10.1016/j.ijfoodmicro.2007.08.010

    Article  CAS  PubMed  Google Scholar 

  18. Labrie SJ, Moineau S (2007) Abortive infection mechanisms and prophage sequences significantly influence the genetic makeup of emerging lytic lactococcal phages. J Bacteriol 189:1482–1487. doi:10.1128/JB.01111-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lahbib-Mansais Y, Boizet B, Dupont L, Mata M, Ritzenthaler P (1992) Characterization of a temperate bacteriophage of Lactobacillus delbrueckii subsp. bulgaricus and its interactions with the host cell chromosome. Microbiology 138:1139–1146

    CAS  Google Scholar 

  20. Liu YG, Whittier RF (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674–681

    Article  CAS  PubMed  Google Scholar 

  21. Lunde M, Blatny JM, Lillehaug D, Aastveit AH, Nes IF (2003) Use of real-time quantitative PCR for the analysis of φLC3 prophage stability in lactococci. Appl Environ Microbiol 69:41–48. doi:10.1128/AEM.69.1.41-48.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A et al (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 103:15611–15616. doi:10.1073/pnas.0607117103

    Article  PubMed  PubMed Central  Google Scholar 

  23. Matthews REF (1982) Classification and nomenclature of viruses. Fourth report of the international committee on taxonomy of viruses. Intervirology 17:1–200

    Article  Google Scholar 

  24. Mercanti DJ, Carminati D, Reinheimer JA, Quiberoni A (2011) Widely distributed lysogeny in probiotic lactobacilli represents a potentially high risk for the fermentative dairy industry. Int J Food Microbiol 144:503–510. doi:10.1016/j.ijfoodmicro

    Article  CAS  PubMed  Google Scholar 

  25. Mikkonen M, Alatossava T (1994) Characterization of the genome region encoding structural proteins of Lactobacillus delbrueckii subsp. lactis lacteriophage LL-H. Gene 151:53–59

    Article  CAS  PubMed  Google Scholar 

  26. Mikkonen M, Räisänen L, Alatossava T (1996) The early gene region completes the nucleotide sequence of Lactobacillus delbrueckii subsp. lactis phage LL-H. Gene 175:49–57

    Article  CAS  PubMed  Google Scholar 

  27. Paez-Espino D, Sharon I, Morovic W, Stahl B, Thomas B, Barrangou R, Banfield J (2015) CRISPR immunity drives rapid phage genome evolution in Streptococcus thermophilus. mBio 6(2):e00262-15. doi:10.1128/mBio.00262-15

    Article  PubMed  PubMed Central  Google Scholar 

  28. Piotr J, Podleśny M, Pawelec J, Malinowska A, Kowalczyk S, Targński Z (2013) Spontaneous release of bacteriophage particles by Lactobacillus rhamnosus Pen. J Microbiol Biotechnol 23:357–363. doi:10.4014/jmb.1207.07037

    Article  Google Scholar 

  29. Quiberoni A, Guglielmotti D, Reinheimer JA (2003) Inactivation of Lactobacillus delbrueckii bacteriophages by heat and biocides. Int J Food Microbiol 84:51–62. doi:10.1016/S0168-1605(02)00394-X

    Article  CAS  PubMed  Google Scholar 

  30. Quiberoni A, Guglielmotti D, Binetti A, Reinheimer J (2004) Characterization of three Lactobacillus delbrueckii subsp. bulgaricus phages and the physicochemical analysis of phage adsorption. J Appl Microbiol 96:340–351. doi:10.1046/j.1365-2672.2003.02147.x

    Article  CAS  PubMed  Google Scholar 

  31. Räisänen L, Schubert K, Jaakonsaari T, Alatossava T (2004) Characterization of lipoteichoic acids as Lactobacillus delbrueckii phage receptor components. J Bacteriol 186:5529–5532

    Article  PubMed  PubMed Central  Google Scholar 

  32. Räisänen L, Draing C, Pfitzenmaier M, Schubert K, Jaakonsaari T, von Aulock S, Hartung T, Alatossava T (2007) Molecular interaction between lipoteichoic acids and Lactobacillus delbrueckii phages depends on d-Alanyl and alpha-glucose substitution of poly(glycerophosphate) backbones. J Bacteriol 189:4135–4140

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ravin V, Räisänen L, Alatossava T (2002) A conserved C-terminal region in Gp71 of the small isometric-head phage LL-H and ORF474 of the prolate-head phage JCL1032 is implicated in specificity of adsorption to its host, Lactobacillus delbrueckii. J Bacteriol 184:2455–2459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Riipinen K-A, Forsma P, Alatossava T (2011) The genomes and comparative genomics of Lactobacillus delbrueckii phages. Arch Virol 156:1217–1233. doi:10.1007/s00705-011-0980-5

    Article  CAS  PubMed  Google Scholar 

  35. Saxelin M, Tynkkynen S, Matilla-Sandholm T, de Vos WM (2005) Probiotic and other functional microbes: from markets to mechanisms. Curr Opin Biotechnol 16:204–211. doi:10.1016/j.copbio.2005.02.003

    Article  CAS  PubMed  Google Scholar 

  36. Suárez V, Zago M, Quiberoni A, Carminati D, Giraffa G, Reinheimer J (2008) Lysogeny in Lactobacillus delbrueckii strains and characterization of two new temperate prolate-headed bacteriophages. J Appl Microbiol 105:1402–1411. doi:10.1111/j.1365-2672.2008.03876.x

    Article  PubMed  Google Scholar 

  37. Suárez VB, Maciel N, Guqiielmotti D, Zago M, Giraffa G, Reinheimer J (2008) Phage-resistance linked to cell heterogeneity in the commercial strain Lactobacillus delbrueckii subsp. lactis Ab1. Int J Food Microbiol 128:401–405

    Article  PubMed  Google Scholar 

  38. Trucco V, Reinheimer J, Quiberoni A, Suárez VB (2011) Adsorption of temperate phages of Lactobacillus delbrueckii strains and phage resistance linked to their cell diversity. J Appl Microbiol 110:935–942

    Article  CAS  PubMed  Google Scholar 

  39. Urshev Z, Ishlimova D (2015) Distribution of clustered regularly interspaced palindrome repeats CRISPR2 and CRISPR3 in Lactobacillus delbrueckii ssp. bulgaricus strains. Biotechnol Biotec Eq 29:541–546

    Article  CAS  Google Scholar 

  40. van de Guchte M, Penaud S, Grimaldi C, Barbe V, Bryson K, Nicolas P et al (2006) The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Natl Acad Sci USA 103:9274–9278. doi:10.1073/pnas.0603024103

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vinderola G, Marcó MB, Guglielmotti DM, Perdigón G, Giraffa G, Reinheimer J, Quiberoni A (2007) Phage-resistant mutants of Lactobacillus delbrueckii may have functional properties that differ from those of parent strains. Int J Food Microbiol 116:96–102

    Article  CAS  PubMed  Google Scholar 

  42. Wang S, Kong J, Gao C, Guo T, Liu X (2010) Isolation and characterization of a novel virulent phage (phiLdb) of Lactobacillus delbrueckii. Int J Food Microbiol 137:22–27. doi:10.1016/j.ijfoodmicro.2009.10.024

    Article  CAS  PubMed  Google Scholar 

  43. Weigel C, Seitz H (2006) Bacteriophage replication modules. FEMS Microbiol Rev 30:321–381. doi:10.1111/j.1574-6976.2006.00015.x

    Article  CAS  PubMed  Google Scholar 

  44. Williams KP (2002) Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: sublocation preference of integrase subfamilies. Nucleic Acids Res 30:866–875. doi:10.1093/nar/30.4.866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu J, Hendrix RW, Duda RL (2004) Conserved translational frameshift in dsDNA bacteriophage tail assembly genes. Mol Cell 16:11–21. doi:10.1016/j.molcel.2004.09.006

    Article  CAS  PubMed  Google Scholar 

  46. Zago M, Scaltriti E, Rossetti L, Guffanti A, Armiento A, Fornasari ME, Grolli S, Carminati D, Brini E, Pavan P, Felsani A, D’Urzo A, Moles A, Claude J-B, Grandori R, Ramoni R, Giraffa G (2013) Characterization of the genome of the dairy Lactobacillus helveticus bacteriophage φAQ113. Appl Environ Microbiol 79:4712–4718. doi:10.1128/AEM.00620-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang X, Kong J, Qu Y (2006) Isolation and characterization of a Lactobacillus fermentum temperate bacteriophage from Chinese yogurt. J Appl Microbiol 101:857–863. doi:10.1111/j.1365-2672.2006.03007.x

    Article  CAS  PubMed  Google Scholar 

  48. Zhang X, Wang S, Guo T, Kong J (2011) Genome analysis of Lactobacillus fermentum temperate bacteriophage φPYB5. Int J Food Microbiol 144:400–405. doi:10.1016/j.ijfoodmicro.2010.10.026

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank M. van de Guchte for the kindness of providing Lb. delbrueckii subsp. bulgaricus ATCC11842. This work was supported by a grant of National Natural Science Foundation of China (no. 31271905, 31471715) and China Postdoctoral Science Foundation Funded Project (no. 2014M550364).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Kong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 110 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, T., Zhang, C., Xin, Y. et al. A novel chimeric prophage vB_LdeS-phiJB from commercial Lactobacillus delbrueckii subsp. bulgaricus . J Ind Microbiol Biotechnol 43, 681–689 (2016). https://doi.org/10.1007/s10295-016-1739-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1739-5

Keywords

Navigation