Production of biorenewable styrene: utilization of biomass-derived sugars and insights into toxicity

  • Jieni Lian
  • Rebekah McKenna
  • Marjorie R. Rover
  • David R. Nielsen
  • Zhiyou Wen
  • Laura R. Jarboe
Bioenergy/Biofuels/Biochemicals

Abstract

Fermentative production of styrene from glucose has been previously demonstrated in Escherichia coli. Here, we demonstrate the production of styrene from the sugars derived from lignocellulosic biomass depolymerized by fast pyrolysis. A previously engineered styrene-producing strain was further engineered for utilization of the anhydrosugar levoglucosan via expression of levoglucosan kinase. The resulting strain produced 240 ± 3 mg L−1 styrene from pure levoglucosan, similar to the 251 ± 3 mg L−1 produced from glucose. When provided at a concentration of 5 g L−1, pyrolytic sugars supported styrene production at titers similar to those from pure sugars, demonstrating the feasibility of producing this important industrial chemical from biomass-derived sugars. However, the toxicity of contaminant compounds in the biomass-derived sugars and styrene itself limit further gains in production. Styrene toxicity is generally believed to be due to membrane damage. Contrary to this prevailing wisdom, our quantitative assessment during challenge with up to 200 mg L−1 of exogenously provided styrene showed little change in membrane integrity; membrane disruption was observed only during styrene production. Membrane fluidity was also quantified during styrene production, but no changes were observed relative to the non-producing control strain. This observation that styrene production is much more damaging to the membrane integrity than challenge with exogenously supplied styrene provides insight into the mechanism of styrene toxicity and emphasizes the importance of verifying proposed toxicity mechanisms during production instead of relying upon results obtained during exogenous challenge.

Keywords

Levoglucosan kinase Membrane damage Laccase Biocatalyst inhibition Styrene 

Abbreviations

USD

US dollar

PAL2

Phenylalanine ammonia lyase

FDC1

Ferulic acid decarboxylase

 LGK

Levoglucosan kinase

G6P

Glucose-6-phosphate

ATP

Adenosine triphosphate

ATCC

American Type Culture Collection

Km

Michaelis constant of enzyme kinetics

Ex

Wavelength for excitation

Em

Wavelength for emission

IPTG

Isopropyl β-d-1-thiogalactopyranoside

MM1

Phosphate-limited minimal media

LB

Lysogeny broth

Amp

Ampicillin

Cm

Chloramphenicol

PBS

Phosphate-buffered saline

DPH

1,6-Diphenyl-1,3,5-hexatriene

References

  1. 1.
    Atsumi S, Wu TY, Machado IMP, Huang WC, Chen PY, Pellegrini M, Liao JC (2010) Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. Mol Syst Biol 6:449CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Brown RC, Brown TR (2014) Biorenewable resources: engineering new products from agriculture. In. Blackwell, Ames, pp 219–226CrossRefGoogle Scholar
  3. 3.
    Chi Z, Rover M, Jun E, Deaton M, Johnston P, Brown RC, Wen Z, Jarboe LR (2013) Overliming detoxification of pyrolytic sugar syrup for direct fermentation of levoglucosan to ethanol. Bioresour Technol 150:220–227CrossRefPubMedGoogle Scholar
  4. 4.
    Claypool JT, Raman DR, Jarboe LR, Nielsen DR (2014) Technoeconomic evaluation of bio-based styrene production by engineered Escherichia coli. J Ind Microbiol Biotechnol 41:1211–1216CrossRefPubMedGoogle Scholar
  5. 5.
    Dalluge DL, Daugaard T, Johnston P, Kuzhiyil N, Wright MM, Brown RC (2014) Continuous production of sugars from pyrolysis of acid-infused lignocellulosic biomass. Green Chem 16:4144–4155CrossRefGoogle Scholar
  6. 6.
    Dunlop MJ (2011) Engineering microbes for tolerance to next-generation biofuels. Biotechnol Biofuels 4:32CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Edwards N, Slakman B, Vadhri V, Mukherjee M (2012) Styrene monomer production using alternative raw materials. Abstracts of Papers of the American Chemical Society 244Google Scholar
  8. 8.
    Energy USDo (2012) New process for producing styrene cuts costs, saves energy and reduces greenhouse gas emissionsGoogle Scholar
  9. 9.
    Ezeji T, Milne C, Price ND, Blaschek HP (2010) Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl Microbiol Biotechnol 85:1697–1712CrossRefPubMedGoogle Scholar
  10. 10.
    Foo JL, Jensen HM, Dahl RH, George K, Keasling JD, Lee TS, Leong S, Mukhopadhyay A (2014) Improving microbial biogasoline production in Escherichia coli using tolerance engineering. mBio 5:e01932Google Scholar
  11. 11.
    Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18CrossRefPubMedGoogle Scholar
  12. 12.
    James DH, Castor WM (2002) Styrene. In: Ullmann’s encyclopedia of industrial chemistry, vol 34. Wiley-VCH, pp 529–544. doi:10.1002/14356007.a25_329.pub2
  13. 13.
    Jarboe LR, Liu P, Royce LA (2011) Engineering inhibitor tolerance for the production of biorenewable fuels and chemicals. Curr Opin Chem Eng 1:38–42CrossRefGoogle Scholar
  14. 14.
    Jarboe LR, Royce LA, Liu P (2013) Understanding biocatalyst inhibition by carboxylic acids. Front Microbiol 4:272CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Jarboe LR, Wen Z, Choi D, Brown RC (2011) Hybrid thermochemical processing: fermentation of pyrolysis-derived bio-oil. Appl Microbiol Biotechnol 91:1519–1523CrossRefPubMedGoogle Scholar
  16. 16.
    Kitamura Y, Yasui T (1991) Purification and Some Properties of Levoglucosan (1,6-Anhydro-β-d-glucopyranose) Kinase from the Yeast Sporobolomyces salmonicolor. Agric Biol Chem 55:523–529CrossRefGoogle Scholar
  17. 17.
    Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRefGoogle Scholar
  18. 18.
    Kuzhiyil N, Dalluge D, Bai X, Kim KH, Brown RC (2012) Pyrolytic sugars from cellulosic biomass. ChemSusChem 5:2228–2236CrossRefPubMedGoogle Scholar
  19. 19.
    Layton DS, Ajjarapu A, Choi DW, Jarboe LR (2011) Engineering ethanologenic Escherichia coli for levoglucosan utilization. Bioresour Technol 102:8318–8322CrossRefPubMedGoogle Scholar
  20. 20.
    Lennen RM, Pfleger BF (2013) Modulating membrane composition alters free fatty acid tolerance in Escherichia coli. PLoS One 8:e54031CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lian J, Chen S, Zhou S, Wang Z, O’Fallon J, Li C-Z, Garcia-Perez M (2010) Separation, hydrolysis and fermentation of pyrolytic sugars to produce ethanol and lipids. Bioresour Technol 101:9688–9699CrossRefPubMedGoogle Scholar
  22. 22.
    Lian J, Garcia-Perez M, Chen S (2013) Fermentation of levoglucosan with oleaginous yeasts for lipid production. Bioresour Technol 133:183–189CrossRefPubMedGoogle Scholar
  23. 23.
    Licandro-Seraut H, Roussel C, Perpetuini G, Gervais P, Cavin J-F (2013) Sensitivity to vinyl phenol derivatives produced by phenolic acid decarboxylase activity in Escherichia coli and several food-borne Gram-negative species. Appl Microbiol Biotechnol 97:7853–7864CrossRefPubMedGoogle Scholar
  24. 24.
    McKenna R, Moya L, McDaniel M, Nielsen DR (2015) Comparing in situ removal strategies for improving styrene bioproduction. Bioprocess Biosyst Eng 38:165–174CrossRefPubMedGoogle Scholar
  25. 25.
    McKenna R, Nielsen DR (2011) Styrene biosynthesis from glucose by engineered E. coli. Metab Eng 13:544–554CrossRefPubMedGoogle Scholar
  26. 26.
    McKenna R, Pugh S, Thompson B, Nielsen DR (2013) Microbial production of the aromatic building-blocks (S)-styrene oxide and (R)-1,2-phenylethanediol from renewable resources. Biotechnol J 8:1465–1475CrossRefPubMedGoogle Scholar
  27. 27.
    Miller EN, Turner PC, Jarboe LR, Ingram LO (2010) Genetic changes that increase 5-hydroxymethyl furfural resistance in ethanol-producing Escherichia coli LY180. Biotechnol Lett 32:661–667CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Mingardon F, Clement C, Hirano K, Nhan M, Luning EG, Chanal A, Mukhopadhyay A (2015) Improving olefin tolerance and production in E. coli using native and evolved AcrB. Biotechnol Bioeng 112:879–888CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Mortimer FC, Mason DJ, Gant VA (2000) Flow cytometric monitoring of antibiotic-induced injury in Escherichia coli using cell-impermeant fluorescent probes. Antimicrob Agents Chemother 44:676–681CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRefPubMedGoogle Scholar
  31. 31.
    Neelis M, Worrell E, Masanet E (2008) Energy efficiency improvement and cost saving opportunities for the petrochemical industry, vol LBNL-964E. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley. www.energystar.gov/ia/business/industry/Petrochemical_Industry.pdf
  32. 32.
    Overton E (1899) Ueber die allgemeinen osmotischen Eigenschaften der Zelle, ihre vermuthlichen Ursachen und ihre Bedeutung fur die Physiologie. Vierteljahrsschr Naturforsch Ges Zurich 44:88–135Google Scholar
  33. 33.
    Park JB, Bühler B, Habicher T, Hauer B, Panke S, Witholt B, Schmid A (2006) The efficiency of recombinant Escherichia coli as biocatalyst for stereospecific epoxidation. Biotechnol Bioeng 95:501–512CrossRefPubMedGoogle Scholar
  34. 34.
    Patwardhan PR, Satrio JA, Brown RC, Shanks BH (2009) Product distribution from fast pyrolysis of glucose-based carbohydrates. J Anal Appl Pyrol 86:323–330CrossRefGoogle Scholar
  35. 35.
    Ramos JL, Duque E, Gallegos M-T, Godoy P, Ramos-González MI, Rojas A, Terán W, Segura A (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Ann Rev Microbiol 56:743–768CrossRefGoogle Scholar
  36. 36.
    Roth BL, Poot M, Yue ST, Millard PJ (1997) Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain. Appl Environ Microbiol 63:2421–2431PubMedPubMedCentralGoogle Scholar
  37. 37.
    Rover MR, Johnston PA, Jin T, Smith RG, Brown RC, Jarboe L (2014) Production of clean pyrolytic sugars for fermentation. ChemSusChem 7:1662–1668CrossRefPubMedGoogle Scholar
  38. 38.
    Royce LA, Liu P, Stebbins MJ, Hanson BC, Jarboe LR (2013) The damaging effects of short chain fatty acids on Escherichia coli membranes. Appl Microbiol Biotechnol 97:8317–8327CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Seok KY, Min J, Hong HN, Park JH, Park KS, Gu MB (2007) Analysis of the stress effects of endocrine disrupting chemicals (EDCs) on Escherichia coli. J Microbiol Biotechnol 17:1390–1393Google Scholar
  40. 40.
    Shinitzky M, Barenholz Y (1978) Fluidity parameters of lipid regions determined by fluorescence polarization. Biochimica et Biophysica Acta (BBA)-Rev Biomembr 515:367–394Google Scholar
  41. 41.
    Sri (2010) Styrene. Access Intelligence LLC IncGoogle Scholar
  42. 42.
    Tribe DE (1987) Novel microorganism and methodGoogle Scholar
  43. 43.
    Wu C, Koylinski T, Bozik J (1981) Preparation of styrene from ethylbenzene US Patent 4,255,599Google Scholar
  44. 44.
    Zhuang X, Zhang H (2002) Identification, characterization of levoglucosan kinase, and cloning and expression of levoglucosan kinase cDNA from Aspergillus niger CBX-209 in Escherichia coli. Protein Expr Purif 26:71–81CrossRefPubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2016

Authors and Affiliations

  • Jieni Lian
    • 1
  • Rebekah McKenna
    • 2
  • Marjorie R. Rover
    • 1
  • David R. Nielsen
    • 2
  • Zhiyou Wen
    • 3
  • Laura R. Jarboe
    • 4
  1. 1.Bioeconomy InstituteIowa State UniversityAmesUSA
  2. 2.Chemical Engineering, School for Engineering of Matter, Transport, and EnergyArizona State UniversityPhoenixUSA
  3. 3.Department of Food Science and Human NutritionIowa State UniversityAmesUSA
  4. 4.Department of Chemical and Biological EngineeringIowa State UniversityAmesUSA

Personalised recommendations