Biobutanol production from C5/C6 carbohydrates integrated with pervaporation: experimental results and conceptual plant design

  • Wouter Van Hecke
  • Pieter Vandezande
  • Marjorie Dubreuil
  • Maarten Uyttebroek
  • Herman Beckers
  • Heleen De Wever
Bioenergy/Biofuels/Biochemicals

Abstract

In this study, a simulated lignocellulosic hydrolyzate was used in a continuous two-stage fermentor setup for production of acetone, butanol and ethanol. An organophilic pervaporation unit was coupled to the second fermentor. The dilution rate in the first fermentor was kept constant at 0.109 h−1, while the dilution rate in the second fermentor was gradually decreased from 0.056 to 0.020 h−1. Glucose was completely consumed, while 61 % of the xylose was consumed at the lowest dilution rate, leading to an overall solvent productivity of 0.65 g L−1 h−1 and a high concentration of 185 g kg−1 solvents in the permeate in the last fermentation zone during 192 h. Based on the experimental results, a process integrated with organophilic pervaporation was conceptually designed and compared with a base-case. Chemcad simulations indicate an energy reduction of ~50 % when organophilic pervaporation is used. This study also demonstrates significant reductions in process flows and energy consumption by the use of organophilic pervaporation as in situ product recovery technology.

Keywords

Bioprocess design Biobutanol Process integration Product inhibition In situ product recovery Pervaporation 

Abbreviations

ABE

Acetone–butanol–ethanol

A

Acetone

B

Butanol

D

Dilution rate (h−1)

E

Ethanol

J

Flux (g m−2 h−1)

LHV

Lower heating value

MEE

Multiple-effect evaporator

P

Solvent productivity (g L−1 h−1)

PDMS

Polydimethylsiloxane

S

Glucose consumption (g L−1 h−1)

\( t_{\text{r}} \)

Residence time (h)

VFA

Volatile fatty acids (g L−1)

VLE

Vapor–liquid equilibrium

x

Mole fraction in feed (−)

QE

Effluent flow rate (kg h−1)

QP

Pervaporation flow rate (kg h−1)

y

Mole fraction in vapor (−)

\( Y_{{{\raise0.7ex\hbox{$P$} \!\mathord{\left/ {\vphantom {P S}}\right.\kern-0pt} \!\lower0.7ex\hbox{$S$}}}} \)

Solvent yield (gsolventsgglucose−1)

Greek symbols

α

Separation factor (−)

β

Enrichment factor (−)

References

  1. 1.
    de Vrije T, Budde M, van der Wal H, Claassen PAM, López-Contreras AM (2013) “In situ” removal of isopropanol, butanol and ethanol from fermentation broth by gas stripping. Bioresour Technol 137:153–159PubMedCrossRefGoogle Scholar
  2. 2.
    Dubreuil MF, Vandezande P, Van Hecke W, Porto-Carrero WJ, Dotremont CT (2013) Study on ageing/fouling phenomena and the effect of upstream nanofiltration on in situ product recovery of n-butanol through poly [1-(trimethylsilyl)-1-propyne] pervaporation membranes. J Membr Sci 447:134–143CrossRefGoogle Scholar
  3. 3.
    Dürre P (1998) New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appl Microbiol Biotechnol 49(6):639–648CrossRefGoogle Scholar
  4. 4.
    Groot WJ, Luyben KC (1987) Continuous production of butanol from a glucose/xylose mixture with an immobilized cell system coupled to pervaporation. Biotechnol Lett 9(12):867–870CrossRefGoogle Scholar
  5. 5.
    Gu Y, Li J, Zhang L, Chen J, Niu L, Yang Y et al (2009) Improvement of xylose utilization in Clostridium acetobutylicum via expression of the talA gene encoding transaldolase from Escherichia coli. J Biotechnol 143(4):284–287PubMedCrossRefGoogle Scholar
  6. 6.
    Harvey BG, Meylemans HA (2011) The role of butanol in the development of sustainable fuel technologies. J Chem Tech Biotechnol 86(1):2–9CrossRefGoogle Scholar
  7. 7.
    Henry JD, Prudich ME, Eykamp W, Hatton TA, Johnston KP, Lemert RM et al (1997) Alternative separation processes. In: Green D, Perry R (eds) Perry’s chemical engineers’ handbook. McGraw Hill, New YorkGoogle Scholar
  8. 8.
    Kumar M, Gayen K (2011) Developments in biobutanol production: new insights. Appl Energy 88(6):1999–2012CrossRefGoogle Scholar
  9. 9.
    Liu G, Wei W, Jin W (2013) Pervaporation membranes for biobutanol production. ACS Sustain Chem Eng 2(4):546–560CrossRefGoogle Scholar
  10. 10.
    Lu C, Dong J, Yang ST (2013) Butanol production from wood pulping hydrolysate in an integrated fermentation–gas stripping process. Bioresour Technol 143:467–475PubMedCrossRefGoogle Scholar
  11. 11.
    Néel J (1997) Pervaporation. Lavoisier, ParisGoogle Scholar
  12. 12.
    Ni Y, Sun Z (2009) Recent progress on industrial fermentative production of acetone–butanol–ethanol by Clostridium acetobutylicum in China. Appl Microbiol Biotechnol 83(3):415–423PubMedCrossRefGoogle Scholar
  13. 13.
    Novy V, Krahulec S, Wegleiter M, Müller G, Longus K, Klimacek M et al (2014) Process intensification through microbial strain evolution: mixed glucose–xylose fermentation in wheat straw hydrolyzates by three generations of recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 7(1):1–12CrossRefGoogle Scholar
  14. 14.
    Ounine K, Petitdemange H, Raval G, Gay R (1985) Regulation and butanol inhibition of d-xylose and d-glucose uptake in Clostridium acetobutylicum. Appl Environ Microbiol 49(4):874–878PubMedPubMedCentralGoogle Scholar
  15. 15.
    Pfromm PH, Boadu VA, Nelson R, Vadlani PM (2010) Bio-butanol vs. bio-ethanol: a technical and economic assessment for corn and switchgrass fermented by yeast or Clostridium acetobutylicum. Biomass Bioenerg 34:515–524CrossRefGoogle Scholar
  16. 16.
    Qureshi N, Blaschek HP (1999) Fouling studies of a pervaporation membrane with commercial fermentation media and fermentation broth of hyper-butanol-producing Clostridium beijerinckii BA101. Sep Sci Technol 34(14):2803–2815CrossRefGoogle Scholar
  17. 17.
    Qureshi N, Singh V, Liu S, Ezeji TC, Saha BC, Cotta MA (2014) Process integration for simultaneous saccharification, fermentation, and recovery (SSFR): production of butanol from corn stover using Clostridium beijerinckii P260. Bioresour Technol 154:222–228PubMedCrossRefGoogle Scholar
  18. 18.
    Qureshi N, Li XL, Hughes S, Saha BC, Cotta MA (2006) Butanol production from corn fiber xylan using Clostridium acetobutylicum. Biotechnol Prog 22(3):673–680PubMedCrossRefGoogle Scholar
  19. 19.
    Qureshi N, Saha B, Cotta M (2007) Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosyst Eng 30(6):419–427PubMedCrossRefGoogle Scholar
  20. 20.
    Uyttebroek M, Van Hecke W, Vanbroekhoven K (2015) Sustainability metrics of 1-butanol. Catal Today 239:7–10CrossRefGoogle Scholar
  21. 21.
    Van der Bruggen B, Luis P (2014) Pervaporation as a tool in chemical engineering: a new era? Curr Opin Chem Eng 4:47–53CrossRefGoogle Scholar
  22. 22.
    Van Hecke W, Hofmann T, De Wever H (2013) Pervaporative recovery of ABE during continuous cultivation: enhancement of performance. Bioresour Technol 129:421–429PubMedCrossRefGoogle Scholar
  23. 23.
    Van Hecke W, Kaur G, De Wever H (2014) Advances in in situ product recovery (ISPR) in whole cell biotechnology during the last decade. Biotechnol Adv 32(7):1245–1255PubMedCrossRefGoogle Scholar
  24. 24.
    Van Hecke W, Vandezande P, Claes S, Vangeel S, Beckers H, Diels L et al (2012) Integrated bioprocess for long-term continuous cultivation of Clostridium acetobutylicum coupled to pervaporation with PDMS composite membranes. Bioresour Technol 111:368–377PubMedCrossRefGoogle Scholar
  25. 25.
    Vane LM (2005) A review of pervaporation for product recovery from biomass fermentation processes. J Chem Tech Biotech 80(6):603–629CrossRefGoogle Scholar
  26. 26.
    Xin F, Wu YR, He J (2014) Simultaneous fermentation of glucose and xylose to butanol by Clostridium sp. strain BOH3. Appl Environ Microbiol 80(15):4771–4778PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2015

Authors and Affiliations

  1. 1.Flemish Institute for Technological Research (VITO)Business Unit Separation and Conversion TechnologyMolBelgium

Personalised recommendations