Skip to main content
Log in

Leveraging ecological theory to guide natural product discovery

  • Natural Products
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Technological improvements have accelerated natural product (NP) discovery and engineering to the point that systematic genome mining for new molecules is on the horizon. NP biosynthetic potential is not equally distributed across organisms, environments, or microbial life histories, but instead is enriched in a number of prolific clades. Also, NPs are not equally abundant in nature; some are quite common and others markedly rare. Armed with this knowledge, random ‘fishing expeditions’ for new NPs are increasingly harder to justify. Understanding the ecological and evolutionary pressures that drive the non-uniform distribution of NP biosynthesis provides a rational framework for the targeted isolation of strains enriched in new NP potential. Additionally, ecological theory leads to testable hypotheses regarding the roles of NPs in shaping ecosystems. Here we review several recent strain prioritization practices and discuss the ecological and evolutionary underpinnings for each. Finally, we offer perspectives on leveraging microbial ecology and evolutionary biology for future NP discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Reference

  1. Abdelmohsen UR, Bayer K, Hentschel U (2014) Diversity, abundance and natural products of marine sponge-associated actinomycetes. Nat Prod Rep 31:381–399. doi:10.1039/c3np70111e

    Article  CAS  PubMed  Google Scholar 

  2. Andrianasolo EH, Haramaty L, Rosario-Passapera R, Vetriani C, Falkowski P, White E, Lutz R (2012) Ammonificins C and D, hydroxyethylamine chromene derivatives from a cultured marine hydrothermal vent bacterium, Thermovibrio ammonificans. Mar Drugs 10:2300–2311. doi:10.3390/md10102300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Bakker MG, Otto-Hanson L, Lange AJ, Bradeen JM, Kinkel LL (2013) Plant monocultures produce more antagonistic soil Streptomyces communities than high-diversity plant communities. Soil Biol Biochem 65:304–312. doi:10.1016/j.soilbio.2013.06.007

    Article  CAS  Google Scholar 

  4. Baltz RH (2006) Marcel Faber roundtable: is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration? J Ind Microbiol Biotechnol 33:507–513

    Article  CAS  PubMed  Google Scholar 

  5. Barton LL, Mandl M, Loy A (2010) Geomicrobiology: molecular and environmental perspective. Geomicrobiol Mol Environ Perspect. doi:10.1007/978-90-481-9204-5

    Article  Google Scholar 

  6. Bernier SP, Surette MG (2013) Concentration-dependent activity in natural environments. Front Microbiol 4:20. doi:10.3389/fmicb.2013.00020

    Article  PubMed Central  PubMed  Google Scholar 

  7. Bertrand S, Bohni N, Schnee S, Schumpp O, Gindro K, Wolfender J-L (2014) Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol Adv 32:1180–1204. doi:10.1016/j.biotechadv.2014.03.001

    Article  CAS  PubMed  Google Scholar 

  8. Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED, Johnston MD, Barton HA, Wright GD (2012) Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS One 7:e34953. doi:10.1371/journal.pone.0034953

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Blunt JW, Copp BR, Keyzers Ra, Munro MHG, Prinsep MR (2014) Marine natural products. Nat Prod Rep 31:160–258. doi:10.1039/c3np70117d

    Article  CAS  PubMed  Google Scholar 

  10. Brendel N, Partida-Martinez LP, Scherlach K, Hertweck C (2007) A cryptic PKS-NRPS gene locus in the plant commensal Pseudomonas fluorescens Pf-5 codes for the biosynthesis of an antimitotic rhizoxin complex. Org Biomol Chem 5:2211–2213. doi:10.1039/b707762a

    Article  CAS  PubMed  Google Scholar 

  11. Bull AT (2004) ASM Press, Washington

  12. Cafaro MJ, Currie CR (2005) Phylogenetic analysis of mutualistic filamentous bacteria associated with fungus-growing ants. Can J Microbiol 51:441–446. doi:10.1139/w05-023

    Article  CAS  PubMed  Google Scholar 

  13. Caldera EJ, Currie CR (2012) The population structure of antibiotic-producing bacterial symbionts of Apterostigma dentigerum ants: Impacts of coevolution and multipartite symbiosis. Am Nat 180:604–617. doi:10.1086/667886

  14. De Candolle AP (1804) Essai sur les proprietes medicales de plantes, comparees ave leur formes exterieures et leur classification naturelle. Mequignon, Paris 1

    Google Scholar 

  15. Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci 100:14555–14561. doi:10.1073/pnas.1934677100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Charlop-Powers Z, Owen JG, Reddy BVB, Ternei MA, Brady SF (2014) Chemical-biogeographic survey of secondary metabolism in soil. Proc Natl Acad Sci USA 111:3757–3762. doi:10.1073/pnas.1318021111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Charlop-Powers Z, Owen JG, Reddy BVB, Ternei MA, Guimarães DO, de Frias Ua, Pupo MT, Seepe P, Feng Z, Brady SF (2015) Global biogeographic sampling of bacterial secondary metabolism. Elife 4:1–10. doi:10.7554/eLife.05048

    Article  Google Scholar 

  18. Cheng K, Rong X, Pinto-Tomás AA, Fernández-Villalobos M, Murillo-Cruz C, Huang Y (2015) Population genetic analysis of Streptomyces albidoflavus reveals habitat barriers to homologous recombination in the diversification of streptomycetes. Appl Environ Microbiol 81:966–975. doi:10.1128/AEM.02925-14

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Cimermancic P, Medema MH, Claesen J, Kurita K, Wieland Brown LC, Mavrommatis K, Pati A, Godfrey PA, Koehrsen M, Clardy J, Birren BW, Takano E, Sali A, Linington RG, Fischbach MA (2014) Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158:412–421. doi:10.1016/j.cell.2014.06.034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Cordero OX, Polz MF (2014) Explaining microbial genomic diversity in light of evolutionary ecology. Nat Rev Microbiol 12:263–273. doi:10.1038/nrmicro3218

    Article  CAS  PubMed  Google Scholar 

  21. Cordero OX, Wildschutte H, Kirkup B, Proehl S, Ngo L, Hussain F, Le Roux F, Mincer T, Polz MF (2012) Ecological populations of bacteria act as socially cohesive units of antibiotic production and resistance. Science 337:1228–1231. doi:10.1126/science.1219385

    Article  CAS  PubMed  Google Scholar 

  22. Czaran TL (2002) Chemical warfare between microbes promotes biodiversity. Proc Natl Acad Sci 99:786–790. doi:10.1073/pnas.012399899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Davelos AL, Kinkel LL, Samac DA (2004) Spatial variation in frequency and intensity of antibiotic interactions among streptomycetes from prairie soil. Appl Environ Microbiol 70:1051–1058. doi:10.1128/AEM.70.2.1051-1058.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Davelos Baines AL, Xiao K, Kinkel LL (2007) Lack of correspondence between genetic and phenotypic groups amongst soil-borne streptomycetes. FEMS Microbiol Ecol 59:564–575. doi:10.1111/j.1574-6941.2006.00231.x

    Article  PubMed  CAS  Google Scholar 

  25. Davidson B (1995) New dimensions in natural products research: cultured marine microorganisms. Curr Opin Biotechnol 6:284–291. doi:10.1016/0958-1669(95)80049-2

    Article  CAS  Google Scholar 

  26. Ding ZG, Li MG, Zhao JY, Ren J, Huang R, Xie MJ, Cui XL, Zhu HJ, Wen ML (2010) Naphthospironone A: an unprecedented and highly functionalized polycyclic metabolite from an alkaline mine waste extremophile. Chem-A Eur J 16:3902–3905. doi:10.1002/chem.200903198

    Article  CAS  Google Scholar 

  27. Doroghazi JR, Albright JC, Goering AW, Ju K-S, Haines RR, Tchalukov KA, Labeda DP, Kelleher NL, Metcalf WW (2014) A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nat Chem Biol 10:963–968. doi:10.1038/nchembio.1659

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Doroghazi JR, Buckley DH (2010) Widespread homologous recombination within and between Streptomyces species. ISME J 4(1136–1143):29

    Google Scholar 

  29. Doroghazi JR, Buckley DH (2014) Intraspecies comparison of Streptomyces pratensis genomes reveals high levels of recombination and gene conservation between strains of disparate geographic origin. BMC Genom 15:970. doi:10.1186/1471-2164-15-970-&gt

    Article  Google Scholar 

  30. Fenical W (1993) Chemical studies of marine bacteria: developing a new resource. Chem Rev 93:1673–1683. doi:10.1021/cr00021a001

    Article  CAS  Google Scholar 

  31. Firn RD, Jones CG (2000) The evolution of secondary metabolism—a unifying model. Mol Microbiol 37:989–994

    Article  CAS  PubMed  Google Scholar 

  32. Gabriel CR, Northup DE (2013) Cave microbiomes: a novel resource for drug discovery. Cave Microbiomes. doi:10.1007/978-1-4614-5206-5

    Google Scholar 

  33. Galm U, Shen B (2007) Natural product drug discovery: the times have never been better. Chem Biol 14:1098–1104

    Article  CAS  PubMed  Google Scholar 

  34. Genilloud O, González I, Salazar O, Martín J, Tormo JR, Vicente F (2011) Current approaches to exploit actinomycetes as a source of novel natural products. J Ind Microbiol Biotechnol 38:375–389. doi:10.1007/s10295-010-0882-7

    Article  CAS  PubMed  Google Scholar 

  35. Groll M, Huber R, Potts BCM (2006) Crystal structures of salinosporamide A (NPI-0052) and B (NPI-0047) in complex with the 20S proteasome reveal important consequences of β-lactone ring opening and a mechanism for irreversible binding. J Am Chem Soc 128:5136–5141. doi:10.1021/ja058320b

    Article  CAS  PubMed  Google Scholar 

  36. Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319. doi:10.1038/nrmicro1129

    Article  CAS  PubMed  Google Scholar 

  37. Heinig U, Scholz S, Jennewein S (2013) Getting to the bottom of Taxol biosynthesis by fungi. Fungal Divers 60:161–170. doi:10.1007/s13225-013-0228-7

    Article  Google Scholar 

  38. Hentschel U, Piel J, Degnan SM, Taylor MW (2012) Genomic insights into the marine sponge microbiome. Nat Rev Microbiol 10:641–654. doi:10.1038/nrmicro2839

    Article  CAS  PubMed  Google Scholar 

  39. Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2009) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8:15–25. doi:10.1038/nrmicro2259

    Article  CAS  Google Scholar 

  40. Huang T, Yang D, Xie P, Xie G, Teng Q, Lohman JR, Zhu X, Huang Y, Zhao L, Jiang Y, Duan Y, Shen B (2014) Strain prioritization for natural product discovery by a high- throughput real-time PCR method. J Nat Prod 77:2296–2303

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Janvier C, Villeneuve F, Alabouvette C, Edel-Hermann V, Mateille T, Steinberg C (2007) Soil health through soil disease suppression: which strategy from descriptors to indicators? Soil Biol Biochem 39:1–23. doi:10.1016/j.soilbio.2006.07.001

    Article  CAS  Google Scholar 

  42. Jensen PR, Williams PG, Oh DC, Zeigler L, Fenical W (2007) Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora. Appl Environ Microbiol 73:1146–1152. doi:10.1128/AEM.01891-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Jiang W, Ye P, Chen CTA, Wang K, Liu P, He S, Wu X, Gan L, Ye Y, Wu B (2013) Two novel hepatocellular carcinoma cycle inhibitory cyclodepsipeptides from a hydrothermal vent crab-associated fungus Aspergillus clavatus C2WU. Mar Drugs 11:4761–4772. doi:10.3390/md11124761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Kaltenpoth M, Engl T (2014) Defensive microbial symbionts in Hymenoptera. Funct Ecol 28:315–327. doi:10.1111/1365-2435.12089

    Article  Google Scholar 

  45. Kim BM, Lee JY, Hwang BK (1998) Diversity of actinomycetes antogonistic to plant pathogenic fungi in cave and sea-mud soils of Korea. J Microbiol 36:86–92

    Google Scholar 

  46. Kinkel LL, Bakker MG, Schlatter DC (2011) A coevolutionary framework for managing disease-suppressive soils. Annu Rev Phytopathol 49:47–67. doi:10.1146/annurev-phyto-072910-095232

    Article  CAS  PubMed  Google Scholar 

  47. Kinkel LL, Schlatter DC, Bakker MG, Arenz BE (2012) Streptomyces competition and co-evolution in relation to plant disease suppression. Res Microbiol 163:490–499. doi:10.1016/j.resmic.2012.07.005

    Article  PubMed  Google Scholar 

  48. Kinkel LL, Schlatter DC, Xiao K, Baines AD (2014) Sympatric inhibition and niche differentiation suggest alternative coevolutionary trajectories among Streptomycetes. ISME J 8:249–256. doi:10.1038/ismej.2013.175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Kirst HA, Michel KH, Martin JW, Creemer LC, Chio EH, Yao RC, Nakatsukasa WM, Boeck LD, Occolowitz JL, Paschal JW, Deeter JB, Jones ND, Thompson GD (1991) A83543A-D, unique fermentation-derived tetracyclic macrolides. Tetrahedron Lett 32:4839–4842. doi:10.1016/S0040-4039(00)93474-9

    Article  CAS  Google Scholar 

  50. Larsen PE, Field D, Gilbert JA (2012) Predicting bacterial community assemblages using an artificial neural network approach. Nat Methods 9:621–625. doi:10.1038/nmeth.1975

    Article  CAS  PubMed  Google Scholar 

  51. Larsen TO, Smedsgaard J, Nielsen KF, Hansen ME, Frisvad JC (2005) Phenotypic taxonomy and metabolite profiling in microbial drug discovery. Nat Prod Report 22:672–695

    Article  CAS  Google Scholar 

  52. Ligon JM, Hill DS, Hammer PE, Torkewitz NR, Hofmann D, Kempf H, Van Pe K (2000) Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manag Sci 56:688–695

    Article  CAS  Google Scholar 

  53. Little AEF, Murakami T, Mueller UG, Currie CR (2006) Defending against parasites: fungus-growing ants combine specialized behaviours and microbial symbionts to protect their fungus gardens. Biol Lett 2:12–16. doi:10.1098/rsbl.2005.0371

    Article  PubMed Central  PubMed  Google Scholar 

  54. Liu M, Abdel-Mageed WM, Ren B, He W, Huang P, Li X, Bolla K, Guo H, Chen C, Song F, Dai H, Quinn RJ, Grkovic T, Liu X, Zhang X, Zhang L (2014) Endophytic Streptomyces sp Y3111 from traditional Chinese medicine produced antitubercular pluramycins. Appl Microbiol Biotechnol 98:1077–1085. doi:10.1007/s00253-013-5335-6

    Article  CAS  PubMed  Google Scholar 

  55. Long RA, Azam F (2001) Antagonistic interactions among marine pelagic bacteria. Appl Environ Microbiol 67:4975–4983. doi:10.1128/AEM.67.11.4975-4983.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Long RA, Rowley DC, Zamora E, Liu J, Bartlett DH, Azam F (2005) Antagonistic interactions among marine bacteria impede the proliferation of Vibrio cholerae. Appl Environ Microbiol 71:8531–8536. doi:10.1128/AEM.71.12.8531-8536.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Lu C, Shen Y (2007) A novel ansamycin, naphthomycin K from Streptomyces sp. J Antibiot (Tokyo) 60:649–653

    Article  CAS  Google Scholar 

  58. Macherla VR, Mitchell SS, Manam RR, Reed KA, Chao TH, Nicholson B, Deyanat-Yazdi G, Mai B, Jensen PR, Fenical WF, Neuteboom STC, Lam KS, Palladino MA, Potts BCM (2005) Structure-activity relationship studies of salinosporamide A (NPI-0052), a novel marine derived proteasome inhibitor. J Med Chem 48:3684–3687. doi:10.1021/jm048995+

    Article  CAS  PubMed  Google Scholar 

  59. Marmann A, Aly A, Lin W, Wang B, Proksch P (2014) Co-cultivation—a powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar Drugs 12:1043–1065. doi:10.3390/md12021043

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman Ja, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Ovreås L, Reysenbach A-L, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112. doi:10.1038/nrmicro1341

    Article  CAS  PubMed  Google Scholar 

  61. Martiny JBH, Eisen JA, Penn K, Allison SD, Horner-Devine MC (2011) Drivers of bacterial beta-diversity depend on spatial scale. Proc Natl Acad Sci USA 108:7850–7854. doi:10.1073/pnas.1016308108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Mazzola M (2004) Assessment and management of soil microbial community structure for disease suppression. Annu Rev Phytopathol 42:35–59. doi:10.1146/annurev.phyto.42.040803.140408

    Article  CAS  PubMed  Google Scholar 

  63. Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM, Piceno YM, DeSantis TZ, Andersen GL, Bakker PAHM, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100. doi:10.1126/science.1203980

    Article  CAS  PubMed  Google Scholar 

  64. Michelsen CF, Watrous J, Glaring MA, Kersten R, Koyama N, Dorrestein PC (2015) Non-ribosomal peptides, key biocontrol components for Pseudomonas fluorescens In5, isolated from a Greenlandic suppressive soil. Mbio 6:2e0079–2e0115

    Article  CAS  Google Scholar 

  65. Mitova MI, Lang G, Wiese J, Imhoff JF (2008) Subinhibitory concentrations of antibiotics induce phenazine production in a marine Streptomyces sp. J Nat Prod 71:824–827. doi:10.1021/np800032a

    Article  CAS  PubMed  Google Scholar 

  66. Moore BS (2005) Biosynthesis of marine natural products: microorganisms (Part A). Nat Prod Rep 22:580–593. doi:10.1039/b404737k

    Article  CAS  PubMed  Google Scholar 

  67. Morlon H, O’Connor TK, Bryant JA, Charkoudian LK, Docherty KM, Jones E, Kembel SW, Green JL, Bohannan BJM (2015) The biogeography of putative microbial antibiotic production. PLoS One 10:e0130659. doi:10.1371/journal.pone.0130659

    Article  PubMed Central  PubMed  Google Scholar 

  68. Mousa WK, Raizada MN (2015) Biodiversity of genes encoding anti-microbial traits within plant associated microbes. Front Plant Sci. doi:10.3389/fpls.2015.00231

    Google Scholar 

  69. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335. doi:10.1021/np200906s

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Nguyen T, Ishida K, Jenke-Kodama H, Dittmann E, Gurgui C, Hochmuth T, Taudien S, Platzer M, Hertweck C, Piel J (2008) Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection. Nat Biotechnol 26:225–233. doi:10.1038/nbt1379

    Article  CAS  PubMed  Google Scholar 

  71. Nielsen TH, Christophersen C, Anthoni U, Sørensen J (1999) Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J Appl Microbiol 87:80–90. doi:10.1046/j.1365-2672.1999.00798.x

    Article  CAS  PubMed  Google Scholar 

  72. Oh D-C, Poulsen M, Currie CR, Clardy J (2009) Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis. Nat Chem Biol 5:391–393. doi:10.1038/nchembio.159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Oh DC, Scott JJ, Currie CR, Clardy J (2009) Mycangimycin, a polyene peroxide from a mutualist Streptomyces sp. Org Lett 11:633–636. doi:10.1021/ol802709x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Ohta E, Ohta S, Kubota NK, Suzuki M, Ogawa T, Yamasaki A, Ikegami S (2001) Micromonospolide A, a new macrolide from Micromonospora sp. Tetrahedron Lett 42:4179–4181. doi:10.1016/S0040-4039(01)00683-9

    Article  CAS  Google Scholar 

  75. Passari AK, Mishra VK, Saikia R, Gupta VK, Singh BP (2015) Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential. Front Microbiol. doi:10.3389/fmicb.2015.00273

    PubMed Central  PubMed  Google Scholar 

  76. Pettit G, Herald C, Doubek DL, Herald DL, Arnold E, Clardy J (1982) Isolation and structure of bryostatin 1. J Am Chem Soc 104:6846–6848. doi:10.1021/ja00388a092

    Article  CAS  Google Scholar 

  77. Piel J (2002) A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc Natl Acad Sci USA 99:14002–14007. doi:10.1073/pnas.222481399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Poulsen M, Cafaro M, Boomsma JJ, Currie CR (2005) Specificity of the mutualistic association between actinomycete bacteria and two sympatric species of Acromyrmex leaf-cutting ants. Mol Ecol 14:3597–3604. doi:10.1111/j.1365-294X.2005.02695.x

    Article  CAS  PubMed  Google Scholar 

  79. Poulsen M, Oh D-C, Clardy J, Currie CR (2011) Chemical analyses of wasp-associated Streptomyces bacteria reveal a prolific potential for natural products discovery. PLoS One 6:e16763. doi:10.1371/journal.pone.0016763

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Qin S, Xing K, Jiang JH, Xu LH, Li WJ (2011) Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol 89:457–473. doi:10.1007/s00253-010-2923-6

    Article  CAS  PubMed  Google Scholar 

  81. Reveillaud J, Maignien L, Eren Ma, Huber Ja, Apprill A, Sogin ML, Vanreusel A (2014) Host-specificity among abundant and rare taxa in the sponge microbiome. ISME J 8:1198–1209. doi:10.1038/ismej.2013.227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim Y-O, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416. doi:10.1038/ismej.2007.106

    Article  PubMed  Google Scholar 

  83. Schlatter DC, Kinkel LL (2014) Global biogeography of Streptomyces antibiotic inhibition, resistance, and resource use. FEMS Microbiol Ecol 88:386–397. doi:10.1111/1574-6941.12307

    Article  CAS  PubMed  Google Scholar 

  84. Seipke RF (2015) Strain-level diversity of secondary metabolism in Streptomyces albus. PLoS One 10:e0116457. doi:10.1371/journal.pone.0116457

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  85. Seipke RF, Kaltenpoth M, Hutchings MI (2012) Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbiol Rev 36:862–876. doi:10.1111/j.1574-6976.2011.00313.x

    Article  CAS  PubMed  Google Scholar 

  86. Shaaban KA, Singh S, Elshahawi SI, Wang X, Ponomareva LV, Sunkara M, Copley GC, Hower JC, Morris AJ, Kharel MK, Thorson JS (2014) Venturicidin C, a new 20-membered macrolide produced by Streptomyces sp. TS-2-2. J Antibiot (Tokyo) 67:223–230. doi:10.1038/ja.2013.113

    Article  CAS  Google Scholar 

  87. Shapiro BJ, Friedman J, Cordero OX, Preheim SP, Timberlake SC, Szabo G, Polz MF, Alm EJ (2012) Population genomics of early events in the ecological differentiation of bacteria. Science 336:48–51. doi:10.1126/science.1218198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Shapiro BJ, Polz MF (2014) Ordering microbial diversity into ecologically and genetically cohesive units. Trends Microbiol 22:235–247. doi:10.1016/j.tim.2014.02.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Sipkema D, de Caralt S, Ja Morillo, Al-Soud WA, Sørensen SJ, Smidt H, Uriz MJ (2015) Similar sponge-associated bacteria can be acquired via both vertical and horizontal transmission. Environ Microbiol. doi:10.1111/1462-2920.12827 in press

    PubMed  Google Scholar 

  90. Skropeta D (2008) Deep-sea natural products. Nat Prod Rep 25:1131–1166. doi:10.1039/b808743a

    Article  CAS  PubMed  Google Scholar 

  91. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216. doi:10.1126/science.8097061

    Article  CAS  PubMed  Google Scholar 

  92. Stierle AA, Stierle DB, Kelly K (2006) Berkelic acid, a novel spiroketal with selective anticancer activity from an acid mine waste fungal extremophile. J Org Chem 71:5357–5360. doi:10.1021/jo060018d

    Article  CAS  PubMed  Google Scholar 

  93. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Bio Rev 67:491–502. doi:10.1128/MMBR.67.4.491

    Article  CAS  Google Scholar 

  94. Takeuchi K, Noda N, Katayose Y, Mukai Y, Numa H, Yamada K, Someya N (2015) Rhizoxin analogs contribute to the biocontrol activity of a newly isolated Pseudomonas strain. Mol Plant Microbe Interact 28:333–342

    Article  CAS  PubMed  Google Scholar 

  95. Taylor MW, Schupp PJ, De Nys R, Kjelleberg S, Steinberg PD (2005) Biogeography of bacteria associated with the marine sponge Cymbastela concentrica. Environ Microbiol 7:419–433. doi:10.1111/j.1462-2920.2004.00711.x

    Article  CAS  PubMed  Google Scholar 

  96. Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago

    Google Scholar 

  97. Tiwari K, Gupta RK (2012) Diversity and isolation of rare actinomycetes: an overview. Crit Rev Microbiol 39:1–39. doi:10.3109/1040841X.2012.709819

    Google Scholar 

  98. Tiwari K, Gupta RK (2012) Rare actinomycetes: a potential storehouse for novel antibiotics. Crit Rev Biotechnol 32:108–132. doi:10.3109/07388551.2011.562482

    Article  CAS  PubMed  Google Scholar 

  99. Torsvik V, Goksøyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Traxler MF, Watrous JD, Alexandrov T, Dorrestein PC, Kolter R (2013) Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome. mBio 4:e00459–13. doi:10.1128/mBio.00459-13

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  101. Truyens S, Weyens N, Cuypers A, Vangronsveld J (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants: bacterial seed endophytes. Environ Microbiol Rep 7:40–50. doi:10.1111/1758-2229.12181

    Article  Google Scholar 

  102. Vaz Jauri P, Bakker MG, Salomon CE, Kinkel LL (2013) Subinhibitory antibiotic concentrations mediate nutrient use and competition among soil Streptomyces. PLoS One 8:e81064. doi:10.1371/journal.pone.0081064

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  103. Vaz Jauri P, Kinkel LL (2014) Nutrient overlap, genetic relatedness and spatial origin influence interaction-mediated shifts in inhibitory phenotype among Streptomyces spp. FEMS Microbiol Ecol 90:264–275. doi:10.1111/1574-6941.12389

    Article  CAS  PubMed  Google Scholar 

  104. Verma VC, Prakash S, Singh RG, Gange AC (2014) Host-mimetic metabolomics of endophytes: looking back into the future. Adv Endophytic Res. doi:10.1007/978-81-322-1575-2

    Article  Google Scholar 

  105. Waksman S, Schatz A (1943) Strain specificity and production of antibiotic substances. Proc Natl Acad Sci USA 29:74–79

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Wang J, Kodali S, Lee SH, Galgoci A, Painter R, Dorso K, Racine F, Motyl M, Hernandez L, Tinney E, Colletti SL, Herath K, Cummings R, Salazar O, González I, Basilio A, Vicente F, Genilloud O, Pelaez F, Jayasuriya H, Young K, Cully DF, Singh SB (2007) Discovery of platencin, a dual FabF and FabH inhibitor with in vivo antibiotic properties. Proc Natl Acad Sci USA 104:7612–7616. doi:10.1073/pnas.0700746104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Wang J, Soisson SM, Young K, Shoop W, Kodali S, Galgoci A, Painter R, Parthasarathy G, Tang YS, Cummings R, Ha S, Dorso K, Motyl M, Jayasuriya H, Ondeyka J, Herath K, Zhang C, Hernandez L, Allocco J, Basilio A, Tormo JR, Genilloud O, Vicente F, Pelaez F, Colwell L, Lee SH, Michael B, Felcetto T, Gill C, Silver LL, Hermes JD, Bartizal K, Barrett J, Schmatz D, Becker JW, Cully D, Singh SB (2006) Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature 441:358–361. doi:10.1038/nature04784

    Article  CAS  PubMed  Google Scholar 

  108. Wang W, Ji J, Li X, Wang J, Li S, Pan G, Fan K, Yang K (2014) Angucyclines as signals modulate the behaviors of Streptomyces coelicolor. Proc Natl Acad Sci 111:5688–5693. doi:10.1073/pnas.1324253111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Wang X, Elshahawi SI, Shaaban KA, Fang L, Ponomareva LV, Zhang Y, Copley GC, Hower JC, Zhan CG, Kharel MK, Thorson JS (2014) Ruthmycin, a new tetracyclic polyketide from Streptomyces sp. RM-4-15. Org Lett 16:456–459. doi:10.1021/ol4033418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Wang X, Shaaban KA, Elshahawi SI, Ponomareva LV, Sunkara M, Copley GC, Hower JC, Morris AJ, Kharel MK, Thorson JS (2014) Mullinamides A and B, new cyclopeptides produced by the Ruth Mullins coal mine fire isolate Streptomyces sp. RM-27-46. J Antibiot (Tokyo) 67:571–575

    Article  CAS  Google Scholar 

  111. Wani ZA, Ashraf N, Mohiuddin T, Riyaz-Ul-Hassan S (2015) Plant-endophyte symbiosis, an ecological perspective. Appl Microbiol Biotechnol 99:2955–2965. doi:10.1007/s00253-015-6487-3

    Article  CAS  PubMed  Google Scholar 

  112. Wawrik B, Kutliev D, Abdivasievna UA, Kukor JJ, Zylstra GJ, Kerkhof L (2007) Biogeography of actinomycete communities and type II polyketide synthase genes in soils collected in New Jersey and Central Asia. Appl Environ Microbiol 73:2982–2989. doi:10.1128/AEM.02611-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Weinstein MJ, Luedemann GM, Oden EM, Wagman GH (1963) Gentamicin, a new broad-spectrum antibiotic complex. Antimicrob Agents Chemother 161:1–7

    CAS  PubMed  Google Scholar 

  114. Weller DM, Raaijmakers JM, Gardener BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348. doi:10.1146/annurev.phyto.40.030402.110010

    Article  CAS  PubMed  Google Scholar 

  115. Wiener P (1996) Experimental studies on the ecological role of antibiotic production in bacteria. Evol Ecol 10:405–421. doi:10.1007/BF01237726

    Article  Google Scholar 

  116. Williams S, Vickers J (1986) The ecology of antibiotic production. Microb Ecol 12:43–52

    Article  CAS  PubMed  Google Scholar 

  117. Wilson MC, Mori T, Rückert C, Uria AR, Helf MJ, Takada K, Gernert C, Steffens UAE, Heycke N, Schmitt S, Rinke C, Helfrich EJN, Brachmann AO, Gurgui C, Wakimoto T, Kracht M, Crüsemann M, Hentschel U, Abe I, Matsunaga S, Kalinowski J, Takeyama H, Piel J (2014) An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506:58–62. doi:10.1038/nature12959

    Article  CAS  PubMed  Google Scholar 

  118. Yim G, Wang HH, Davies J (2007) Antibiotics as signalling molecules. Philos Trans R Soc Lond B Biol Sci 362:1195–1200. doi:10.1098/rstb.2007.2044

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. Zein N, Solomon W, Colson KL, Schroeder DR (1995) Maduropeptin: an antitumor chromoprotein with selective protease activity and DNA cleaving properties. Biochemistry 34:11591–11597. doi:10.1021/bi00036a035

    Article  CAS  PubMed  Google Scholar 

  120. Zhao LX, Huang SX, Tang SK, Jiang CL, Duan Y, Beutler Ja, Henrich CJ, McMahon JB, Schmid T, Blees JS, Colburn NH, Rajski SR, Shen B (2011) Actinopolysporins A-C and tubercidin as a pdcd4 stabilizer from the halophilic actinomycete Actinopolyspora erythraea YIM 90600. J Nat Prod 74:1990–1995. doi:10.1021/np200603g

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Zinger L, Boetius A, Ramette A (2014) Bacterial taxa-area and distance-decay relationships in marine environments. Mol Ecol 23:954–964. doi:10.1111/mec.12640

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, under agreement No. 2011-67019-30330 and the University of Minnesota Agricultural Experiment Station Project (#MIN 22-018). Resources from the University of Minnesota Supercomputing Institute are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda L. Kinkel.

Additional information

Special Issue: Natural Product Discovery and Development in the Genomic Era. Dedicated to Professor Satoshi Ōmura for his numerous contributions to the field of natural products.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smanski, M.J., Schlatter, D.C. & Kinkel, L.L. Leveraging ecological theory to guide natural product discovery. J Ind Microbiol Biotechnol 43, 115–128 (2016). https://doi.org/10.1007/s10295-015-1683-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1683-9

Keywords

Navigation