Skip to main content
Log in

The many roles of glutamate in metabolism

  • Mini-Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The amino acid glutamate is a major metabolic hub in many organisms and as such is involved in diverse processes in addition to its role in protein synthesis. Nitrogen assimilation, nucleotide, amino acid, and cofactor biosynthesis, as well as secondary natural product formation all utilize glutamate in some manner. Glutamate also plays a role in the catabolism of certain amines. Understanding glutamate’s role in these various processes can aid in genome mining for novel metabolic pathways or the engineering of pathways for bioremediation or chemical production of valuable compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adrian P, Andreux F, Viswanathan R, Freitag D, Scheunert I (1989) Fate of anilines and related compounds in the environment. A review. Toxicol Environ Chem 20–21:109–120. doi:10.1080/02772248909357366

    Article  Google Scholar 

  2. Ang EL, Obbard JP, Zhao H (2007) Probing the molecular determinants of aniline dioxygenase substrate specificity by saturation mutagenesis. FEBS J 274:928–939. doi:10.1111/j.1742-4658.2007.05638.x

    Article  CAS  PubMed  Google Scholar 

  3. Åslund F, Beckwith J (1999) Bridge over troubled waters: sensing stress by disulfide bond formation. Cell 96:751–753. doi:10.1016/S0092-8674(00)80584-X

    Article  PubMed  Google Scholar 

  4. Bender DA (2012) Nitrogen metabolism. Amino acid metabolism. Wiley, New York, pp 1–65. doi:10.1002/9781118357514.ch1

  5. Benigni R, Passerini L (2002) Carcinogenicity of the aromatic amines: from structure–activity relationships to mechanisms of action and risk assessment. Mutat Res 511:191–206. doi:10.1016/S1383-5742(02)00008-X

    Article  CAS  PubMed  Google Scholar 

  6. Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 5:593–599. doi:10.1038/nchembio.186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Bibb MJ (2005) Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8:208–215. doi:10.1016/j.mib.2005.02.016

    Article  CAS  PubMed  Google Scholar 

  8. Britton KL, Baker PJ, Engel PC, Rice DW, Stillman TJ (1993) Evolution of substrate diversity in the superfamily of amino acid dehydrogenases: prospects for rational chiral synthesis. J Mol Biol 234:938–945. doi:10.1006/jmbi.1993.1647

    Article  CAS  PubMed  Google Scholar 

  9. Chakraburtty R, Bibb M (1997) The ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2) plays a conditional role in antibiotic production and morphological differentiation. J Bacteriol 179:5854–5861

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Challis GL, Ravel J, Townsend CA (2000) Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7:211–224. doi:10.1016/S1074-5521(00)00091-0

    Article  CAS  PubMed  Google Scholar 

  11. Copley S, Dhillon J (2002) Lateral gene transfer and parallel evolution in the history of glutathione biosynthesis genes. Genome Biol 3:1–16. doi:10.1186/gb-2002-3-5-research0025

    Article  Google Scholar 

  12. Curnow AW, Hong K-W, Yuan R, S-i Kim, Martins O, Winkler W, Henkin TM, Söll D (1997) Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proc Natl Acad Sci USA 94:11819–11826

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Dawson MJ (2007) Lantibiotics as antimicrobial agents. Expert Opin Ther Pat 17:365–369. doi:10.1517/13543776.17.4.365

    Article  CAS  Google Scholar 

  14. de Azevedo Wäsch SI, van der Ploeg JR, Maire T, Lebreton A, Kiener A, Leisinger T (2002) Transformation of isopropylamine to L-alaninol by Pseudomonas sp. Strain KIE171 involves N-glutamylated intermediates. Appl Environ Microbiol 68:2368–2375. doi:10.1128/aem.68.5.2368-2375.2002

    Article  PubMed Central  PubMed  Google Scholar 

  15. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104:19345–19350. doi:10.1073/pnas.0709747104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Dion HW, Woo PWK, Willmer NE, Kern DL, Onaga J, Fusari SA (1972) Butirosin, a new aminoglycosidic antibiotic complex: isolation and characterization. Antimicrob Agents Chemother 2:84–88. doi:10.1128/aac.2.2.84

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Donadio S, Maffioli S, Monciardini P, Sosio M, Jabés D (2010) Antibiotic discovery in the twenty-first century: current trends and future perspectives. J Antibiot 63:423–430. doi:10.1038/ja.2010.62

    Article  CAS  PubMed  Google Scholar 

  18. Donadio S, Maffioli S, Monciardini P, Sosio M, Jabés D (2010) Sources of novel antibiotics-aside the common roads. Appl Microbiol Biotechnol 88:1261–1267. doi:10.1007/s00253-010-2877-8

    Article  CAS  PubMed  Google Scholar 

  19. Dong H, Nilsson L, Kurland CG (1996) Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J Mol Biol 260:649–663. doi:10.1006/jmbi.1996.0428

    Article  CAS  PubMed  Google Scholar 

  20. Fawaz MV, Topper ME, Firestine SM (2011) The ATP-grasp enzymes. Bioorg Chem 39:185–191. doi:10.1016/j.bioorg.2011.08.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Férir G, Petrova MI, Andrei G, Huskens D, Hoorelbeke B, Snoeck R, Vanderleyden J, Balzarini J, Bartoschek S, Brönstrup M, Süssmuth RD, Schols D (2013) The lantibiotic peptide labyrinthopeptin A1 demonstrates broad anti-HIV and anti-HSV activity with potential for microbicidal applications. PLoS One. doi:10.1371/journal.pone.0064010

    PubMed Central  PubMed  Google Scholar 

  22. Fox JT, Stover PJ (2008) Folate-mediated one-carbon metabolism. In: Gerald L (ed) Vitamins & hormones, vol 79. Academic Press, New York, pp 1–44. doi:10.1016/S0083-6729(08)00401-9

  23. Fujii T, Takeo M, Maeda Y (1997) Plasmid-encoded genes specifying aniline oxidation from Acinetobacter sp. strain YAA. Microbiology 143:93–99. doi:10.1099/00221287-143-1-93

    Article  CAS  PubMed  Google Scholar 

  24. Gao JT, Ju KS, Yu XM, Velasquez JE, Mukherjee S, Lee J, Zhao CM, Evans BS, Doroghazi JR, Metcalf WW, van der Donk WA (2014) Use of a phosphonate methyltransferase in the identification of the fosfazinomycin biosynthetic gene cluster. Angew Chem Int Ed 53:1334–1337. doi:10.1002/anie.201308363

    Article  CAS  Google Scholar 

  25. Garg N, Salazar-Ocampo LMA, van der Donk WA (2013) In vitro activity of the nisin dehydratase NisB. Proc Natl Acad Sci USA 110:7258–7263. doi:10.1073/pnas.1222488110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Graupner M, White RH (2003) Methanococcus jannaschii coenzyme F420 analogs contain a terminal α-linked glutamate. J Bacteriol 185:4662–4665. doi:10.1128/jb.185.15.4662-4665.2003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Held KD, Biaglow JE (1994) Mechanisms for the oxygen radical-mediated toxicity of various thiol-containing compounds in cultured mammalian cells. Radiat Res 139:15–23. doi:10.2307/3578727

    Article  CAS  PubMed  Google Scholar 

  28. Helling RB (1994) Why does Escherichia coli have two primary pathways for synthesis of glutamate? J Bacteriol 176:4664–4668

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Hesketh A, Sun J, Bibb M (2001) Induction of ppGpp synthesis in Streptomyces coelicolor A3(2) grown under conditions of nutritional sufficiency elicits actII-ORF4 transcription and actinorhodin biosynthesis. Mol Microbiol 39:136–144. doi:10.1046/j.1365-2958.2001.02221.x

    Article  CAS  PubMed  Google Scholar 

  30. Horna DH, Gómez C, Olano C, Palomino-Schätzlein M, Pineda-Lucena A, Carbajo RJ, Braña AF, Méndez C, Salas JA (2011) Biosynthesis of the RNA polymerase inhibitor streptolydigin in Streptomyces lydicus: tailoring modification of 3-methyl-aspartate. J Bacteriol 193:2647–2651. doi:10.1128/jb.00108-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Ibba M, Curnow AW, Söll D (1997) Aminoacyl-tRNA synthesis: divergent routes to a common goal. Trends Biochem Sci 22:39–42. doi:10.1016/S0968-0004(96)20033-7

    Article  CAS  PubMed  Google Scholar 

  32. Iyer LM, Abhiman S, Maxwell Burroughs A, Aravind L (2009) Amidoligases with ATP-grasp, glutamine synthetase-like and acetyltransferase-like domains: synthesis of novel metabolites and peptide modifications of proteins. Mol BioSyst 5:1636–1660. doi:10.1039/b917682a

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Jabés D, Brunati C, Candiani G, Riva S, Romanó G, Donadio S (2011) Efficacy of the new lantibiotic NAI-107 in experimental infections induced by multidrug-resistant Gram-positive pathogens. Antimicrob Agents Chemother 55:1671–1676. doi:10.1128/AAC.01288-10

    Article  PubMed Central  PubMed  Google Scholar 

  34. Jahn D, Verkamp E, Söll D (1992) Glutamyl-transfer RNA: a precursor of heme and chlorophyll biosynthesis. Trends Biochem Sci 17:215–218. doi:10.1016/0968-0004(92)90380-R

    Article  CAS  PubMed  Google Scholar 

  35. Janso JE, Haltli BA, Eustáquio AS, Kulowski K, Waldman AJ, Zha L, Nakamura H, Bernan VS, He H, Carter GT, Koehn FE, Balskus EP (2014) Discovery of the lomaiviticin biosynthetic gene cluster in Salinispora pacifica. Tetrahedron 70:4156–4164. doi:10.1016/j.tet.2014.03.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Jones AM, Helm JM (2009) Emerging treatments in cystic fibrosis. Drugs 69:1903–1910

    Article  CAS  PubMed  Google Scholar 

  37. Kawaguchi H, Naito T, Nakagawa S, Fujisawa KI (1972) BB-K 8, a new semisynthetic aminoglycoside antibiotic. J Antibiot (Tokyo) 25:695–708

    Article  CAS  Google Scholar 

  38. Knerr PJ, van der Donk WA (2012) Discovery, biosynthesis, and engineering of lantipeptides. Annu Rev Biochem 81:479–505. doi:10.1146/annurev-biochem-060110-113521

    Article  CAS  PubMed  Google Scholar 

  39. Kumada Y, Benson DR, Hillemann D, Hosted TJ, Rochefort DA, Thompson CJ, Wohlleben W, Tateno Y (1993) Evolution of the glutamine synthetase gene, one of the oldest existing and functioning genes. Proc Natl Acad Sci USA 90:3009–3013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Kurihara S, Oda S, Kato K, Kim HG, Koyanagi T, Kumagai H, Suzuki H (2005) A novel putrescine utilization pathway involves γ-glutamylated intermediates of Escherichia coli K-12. J Biol Chem 280:4602–4608. doi:10.1074/jbc.M411114200

    Article  CAS  PubMed  Google Scholar 

  41. Kurihara S, Oda S, Tsuboi Y, Kim HG, Oshida M, Kumagai H, Suzuki H (2008) γ-Glutamylputrescine synthetase in the putrescine utilization pathway of Escherichia coli K-12. J Biol Chem 283:19981–19990. doi:10.1074/jbc.M800133200

    Article  CAS  PubMed  Google Scholar 

  42. Leigh JA, Rinehart KL, Wolfe RS (1985) Methanofuran (carbon dioxide reduction factor), a formyl carrier in methane production from carbon dioxide in Methanobacterium. Biochemistry 24:995–999. doi:10.1021/bi00325a028

    Article  CAS  PubMed  Google Scholar 

  43. Lessner DJ, Johnson GR, Parales RE, Spain JC, Gibson DT (2002) Molecular characterization and substrate specificity of nitrobenzene dioxygenase from Comamonas sp. strain JS765. Appl Environ Microbiol 68:634–641. doi:10.1128/aem.68.2.634-641.2002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Levicán G, Katz A, Valenzuela P, Söll D, Orellana O (2005) A tRNAGlu that uncouples protein and tetrapyrrole biosynthesis. FEBS Lett 579:6383–6387. doi:10.1016/j.febslet.2005.09.100

    Article  PubMed  Google Scholar 

  45. Li H, Graupner M, Xu H, White RH (2003) CofE catalyzes the addition of two glutamates to F420-0 in F420 coenzyme biosynthesis in Methanococcus jannaschii. Biochemistry 42:9771–9778. doi:10.1021/bi034779b

    Article  CAS  PubMed  Google Scholar 

  46. Li Y, Llewellyn NM, Giri R, Huang F, Spencer JB (2005) Biosynthesis of the unique amino acid side chain of butirosin: possible protective-group chemistry in an acyl carrier protein-mediated pathway. Chem Biol 12:665–675. doi:10.1016/j.chembiol.2005.04.010

    Article  CAS  PubMed  Google Scholar 

  47. Lin XL, White RH (1986) Occurrence of coenzyme F420 and its gamma-monoglutamyl derivative in nonmethanogenic archaebacteria. J Bacteriol 168:444–448

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Llewellyn NM, Li Y, Spencer JB (2007) Biosynthesis of butirosin: transfer and deprotection of the unique amino acid side chain. Chem Biol 14:379–386. doi:10.1016/j.chembiol.2007.02.005

    Article  CAS  PubMed  Google Scholar 

  49. Lubelski J, Rink R, Khusainov R, Moll GN, Kuipers OP (2008) Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin. Cell Mol Life Sci 65:455–476. doi:10.1007/s00018-007-7171-2

    Article  CAS  PubMed  Google Scholar 

  50. Merrick MJ, Edwards RA (1995) Nitrogen control in bacteria. Microbiol Rev 59:604–622

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Miller RE, Stadtman ER (1972) Glutamate synthase from Escherichia coli: an iron-sulfide flavoprotein. J Biol Chem 247:7407–7419

    CAS  PubMed  Google Scholar 

  52. Moore BS, Hertweck C (2002) Biosynthesis and attachment of novel bacterial polyketide synthase starter units. Nat Prod Rep 19:70–99. doi:10.1039/B003939J

    Article  CAS  PubMed  Google Scholar 

  53. Nakamura Y, Gojobori T, Ikemura T (2000) Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res 28:292. doi:10.1093/nar/28.1.292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Nocek B, Evdokimova E, Proudfoot M, Kudritska M, Grochowski LL, White RH, Savchenko A, Yakunin AF, Edwards A, Joachimiak A (2007) Structure of an amide bond forming F420:γγ-glutamyl ligase from Archaeoglobus fulgidus—a member of a new family of non-ribosomal peptide synthases. J Mol Biol 372:456–469. doi:10.1016/j.jmb.2007.06.063

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Ogasawara Y, Katayama K, Minami A, Otsuka M, Eguchi T, Kakinuma K (2004) Cloning, sequencing, and functional analysis of the biosynthetic gene cluster of macrolactam antibiotic vicenistatin in Streptomyces halstedii. Chem Biol 11:79–86. doi:10.1016/j.chembiol.2003.12.010

    CAS  PubMed  Google Scholar 

  56. Olano C, Gómez C, Pérez M, Palomino M, Pineda-Lucena A, Carbajo RJ, Braña AF, Méndez C, Salas JA (2009) Deciphering biosynthesis of the RNA polymerase inhibitor streptolydigin and generation of glycosylated derivatives. Chem Biol 16:1031–1044. doi:10.1016/j.chembiol.2009.09.015

    Article  CAS  PubMed  Google Scholar 

  57. Oliynyk I, Varelogianni G, Roomans GM, Johannesson M (2010) Effect of duramycin on chloride transport and intracellular calcium concentration in cystic fibrosis and non-cystic fibrosis epithelia. Apmis 118:982–990. doi:10.1111/j.1600-0463.2010.02680.x

    Article  CAS  PubMed  Google Scholar 

  58. Ortega MA, Hao Y, Zhang Q, Walker MC, van der Donk WA, Nair SK (2015) Structure and mechanism of the tRNA-dependent lantibiotic dehydratase NisB. Nature 517:509–512. doi:10.1038/nature13888

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Otsuka M, Eguchi T, Shindo K, Kakinuma K (1998) Non-fatty acyl polyketide starter in the biosynthesis of vicenistatin, an antitumor macrolactam antibiotic. Tetrahedron Lett 39:3185–3188. doi:10.1016/S0040-4039(98)00455-9

    Article  CAS  Google Scholar 

  60. Parales JV, Parales RE, Resnick SM, Gibson DT (1998) Enzyme specificity of 2-nitrotoluene 2,3-dioxygenase from Pseudomonas sp. strain JS42 is determined by the c-terminal region of the α subunit of the oxygenase component. J Bacteriol 180:1194–1199

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563. doi:10.1007/s002530051432

    Article  CAS  PubMed  Google Scholar 

  62. Potrykus K, Cashel M (2008) (p)ppGpp: still magical? Annu Rev Microbiol 62:35–51. doi:10.1146/annurev.micro.62.081307.162903

    Article  CAS  PubMed  Google Scholar 

  63. Prinz WA, Åslund F, Holmgren A, Beckwith J (1997) The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem 272:15661–15667. doi:10.1074/jbc.272.25.15661

    Article  CAS  PubMed  Google Scholar 

  64. Reitzer L (2003) Nitrogen assimilation and global regulation in Escherichia coli. Annu Rev Microbiol 57:155–176. doi:10.1146/annurev.micro.57.030502.090820

    Article  CAS  PubMed  Google Scholar 

  65. Sanchez S, Demain AL (2002) Metabolic regulation of fermentation processes. Enzyme Microb Technol 31:895–906. doi:10.1016/S0141-0229(02)00172-2

    Article  CAS  Google Scholar 

  66. Schauer S, Chaturvedi S, Randau L, Moser J, Kitabatake M, Lorenz S, Verkamp E, Schubert W-D, Nakayashiki T, Murai M, Wall K, Thomann H-U, Heinz DW, Inokuchi H, Söll D, Jahn D (2002) Escherichia coli glutamyl-tRNA reductase: trapping the thioester intermediate. J Biol Chem 277:48657–48663. doi:10.1074/jbc.M206924200

    Article  CAS  PubMed  Google Scholar 

  67. Schirch V, Strong WB (1989) Interaction of folylpolyglutamates with enzymes in one-carbon metabolism. Arch Biochem Biophys 269:371–380. doi:10.1016/0003-9861(89)90120-3

    Article  CAS  PubMed  Google Scholar 

  68. Shaibe E, Metzer E, Halpern YS (1985) Metabolic pathway for the utilization of l-arginine, l-ornithine, agmatine, and putrescine as nitrogen sources in Escherichia coli K-12. J Bacteriol 163:933–937

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Shapir N, Mongodin EF, Sadowsky MJ, Daugherty SC, Nelson KE, Wackett LP (2007) Evolution of catabolic pathways: genomic insights into microbial s-triazine metabolism. J Bacteriol 189:674–682. doi:10.1128/jb.01257-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Shinohara Y, Kudo F, Eguchi T (2011) A natural protecting group strategy to carry an amino acid starter unit in the biosynthesis of macrolactam polyketide antibiotics. J Am Chem Soc 133:18134–18137. doi:10.1021/ja208927r

    Article  CAS  PubMed  Google Scholar 

  71. Sieber SA, Marahiel MA (2005) Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem Rev 105:715–738. doi:10.1021/cr0301191

    Article  CAS  PubMed  Google Scholar 

  72. Skellam EJ, Stewart AK, Strangman WK, Wright JLC (2013) Identification of micromonolactam, a new polyene macrocyclic lactam from two marine Micromonospora strains using chemical and molecular methods: clarification of the biosynthetic pathway from a glutamate starter unit. J Antibiot 66:431–441. doi:10.1038/ja.2013.34

    Article  CAS  PubMed  Google Scholar 

  73. Smith CA (2006) Structure, function and dynamics in the mur family of bacterial cell wall ligases. J Mol Biol 362:640–655. doi:10.1016/j.jmb.2006.07.066

    Article  CAS  PubMed  Google Scholar 

  74. Smith MA, Kannangara CG, Grimm B (1992) Glutamate 1-semialdehyde aminotransferase: anomalous enantiomeric reaction and enzyme mechanism. Biochemistry 31:11249–11254. doi:10.1021/bi00160a041

    Article  CAS  PubMed  Google Scholar 

  75. Sundquist AR, Fahey RC (1989) The function of gamma-glutamylcysteine and bis-gamma-glutamylcystine reductase in Halobacterium halobium. J Biol Chem 264:719–725

    CAS  PubMed  Google Scholar 

  76. Suzuki H, Kurihara S (2015) Polyamine catabolism in prokaryotes. In: Kusano T, Suzuki H (eds) Polyamines. Springer, Tokyo, pp 47–59. doi:10.1007/978-4-431-55212-3_4

  77. Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53:749–790. doi:10.1146/annurev.bi.53.070184.003533

    Article  CAS  PubMed  Google Scholar 

  78. Takaishi M, Kudo F, Eguchi T (2012) A unique pathway for the 3-aminobutyrate starter unit from L-glutamate through β-glutamate during biosynthesis of the 24-membered macrolactam antibiotic, incednine. Org Lett 14:4591–4593. doi:10.1021/ol302052c

    Article  CAS  PubMed  Google Scholar 

  79. Takaishi M, Kudo F, Eguchi T (2013) Identification of the incednine biosynthetic gene cluster: characterization of novel β-glutamate-β-decarboxylase IdnL3. J Antibiot 66:691–699. doi:10.1038/ja.2013.76

    Article  CAS  PubMed  Google Scholar 

  80. Takeo M, Ohara A, Sakae S, Okamoto Y, Kitamura C, D-i Kato, Negoro S (2013) Function of a glutamine synthetase-like protein in bacterial aniline oxidation via γ-glutamylanilide. J Bacteriol 195:4406–4414. doi:10.1128/jb.00397-13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Tang L, Hutchinson CR (1993) Sequence, transcriptional, and functional analyses of the valine (branched-chain amino acid) dehydrogenase gene of Streptomyces coelicolor. J Bacteriol 175:4176–4185

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Umbarger HE (1978) Amino acid biosynthesis and its regulation. Annu Rev Biochem 47:533–606. doi:10.1146/annurev.bi.47.070178.002533

    Article  CAS  Google Scholar 

  83. van Eunen K, Bouwman J, Daran-Lapujade P, Postmus J, Canelas AB, Mensonides FIC, Orij R, Tuzun I, van den Brink J, Smits GJ, van Gulik WM, Brul S, Heijnen JJ, de Winde JH, Teixeira de Mattos MJ, Kettner C, Nielsen J, Westerhoff HV, Bakker BM (2010) Measuring enzyme activities under standardized in vivo-like conditions for systems biology. FEBS J 277:749–760. doi:10.1111/j.1742-4658.2009.07524.x

    Article  PubMed  Google Scholar 

  84. van Wezel GP, McDowall KJ (2011) The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28:1311–1333. doi:10.1039/C1NP00003A

    Article  PubMed  Google Scholar 

  85. van Wezel GP, Krabben P, Traag BA, Keijser BJF, Kerste R, Vijgenboom E, Heijnen JJ, Kraal B (2006) Unlocking Streptomyces spp. for use as sustainable industrial production platforms by morphological engineering. Appl Environ Microbiol 72:5283–5288. doi:10.1128/aem.00808-06

    Article  PubMed Central  PubMed  Google Scholar 

  86. Vanoni MA, Curti B (1999) Glutamate synthase: a complex iron-sulfur flavoprotein. Cell Mol Life Sci 55:617–638. doi:10.1007/s000180050319

    Article  CAS  PubMed  Google Scholar 

  87. Wang Y, Xu H, Harich KC, White RH (2014) Identification and characterization of a tyramine–glutamate ligase (MfnD) involved in methanofuran biosynthesis. Biochemistry 53:6220–6230. doi:10.1021/bi500879h

    Article  CAS  PubMed  Google Scholar 

  88. White RH (1988) Structural diversity among methanofurans from different methanogenic bacteria. J Bacteriol 170:4594–4597

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Yao X, He W, Lu C-D (2011) Functional characterization of seven γ-glutamylpolyamine synthetase genes and the bauRABCD locus for polyamine and β-alanine utilization in Pseudomonas aeruginosa PAO1. J Bacteriol 193:3923–3930. doi:10.1128/jb.05105-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Yarzábal A, Brasseur G, Bonnefoy V (2002) Cytochromes c of Acidithiobacillus ferrooxidans, vol 209. FEMS Microbiol Lett. doi:10.1111/j.1574-6968.2002.tb11130.x

    PubMed  Google Scholar 

  91. Zhang Q, Doroghazi JR, Zhao X, Walker MC, van der Donk WA (2015) Expanded natural product diversity revealed by analysis of lanthipeptide-like gene clusters in Actinobacteria. Appl Environ Microbiol. doi:10.1128/AEM.00635-15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfred A. van der Donk.

Additional information

Special Issue: Natural Product Discovery and Development in the Genomic Era. Dedicated to Professor Satoshi Ōmura for his numerous contributions to the field of natural products.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walker, M.C., van der Donk, W.A. The many roles of glutamate in metabolism. J Ind Microbiol Biotechnol 43, 419–430 (2016). https://doi.org/10.1007/s10295-015-1665-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1665-y

Keywords

Navigation