Abstract
The amino acid glutamate is a major metabolic hub in many organisms and as such is involved in diverse processes in addition to its role in protein synthesis. Nitrogen assimilation, nucleotide, amino acid, and cofactor biosynthesis, as well as secondary natural product formation all utilize glutamate in some manner. Glutamate also plays a role in the catabolism of certain amines. Understanding glutamate’s role in these various processes can aid in genome mining for novel metabolic pathways or the engineering of pathways for bioremediation or chemical production of valuable compounds.
Similar content being viewed by others
References
Adrian P, Andreux F, Viswanathan R, Freitag D, Scheunert I (1989) Fate of anilines and related compounds in the environment. A review. Toxicol Environ Chem 20–21:109–120. doi:10.1080/02772248909357366
Ang EL, Obbard JP, Zhao H (2007) Probing the molecular determinants of aniline dioxygenase substrate specificity by saturation mutagenesis. FEBS J 274:928–939. doi:10.1111/j.1742-4658.2007.05638.x
Åslund F, Beckwith J (1999) Bridge over troubled waters: sensing stress by disulfide bond formation. Cell 96:751–753. doi:10.1016/S0092-8674(00)80584-X
Bender DA (2012) Nitrogen metabolism. Amino acid metabolism. Wiley, New York, pp 1–65. doi:10.1002/9781118357514.ch1
Benigni R, Passerini L (2002) Carcinogenicity of the aromatic amines: from structure–activity relationships to mechanisms of action and risk assessment. Mutat Res 511:191–206. doi:10.1016/S1383-5742(02)00008-X
Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 5:593–599. doi:10.1038/nchembio.186
Bibb MJ (2005) Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8:208–215. doi:10.1016/j.mib.2005.02.016
Britton KL, Baker PJ, Engel PC, Rice DW, Stillman TJ (1993) Evolution of substrate diversity in the superfamily of amino acid dehydrogenases: prospects for rational chiral synthesis. J Mol Biol 234:938–945. doi:10.1006/jmbi.1993.1647
Chakraburtty R, Bibb M (1997) The ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2) plays a conditional role in antibiotic production and morphological differentiation. J Bacteriol 179:5854–5861
Challis GL, Ravel J, Townsend CA (2000) Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7:211–224. doi:10.1016/S1074-5521(00)00091-0
Copley S, Dhillon J (2002) Lateral gene transfer and parallel evolution in the history of glutathione biosynthesis genes. Genome Biol 3:1–16. doi:10.1186/gb-2002-3-5-research0025
Curnow AW, Hong K-W, Yuan R, S-i Kim, Martins O, Winkler W, Henkin TM, Söll D (1997) Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proc Natl Acad Sci USA 94:11819–11826
Dawson MJ (2007) Lantibiotics as antimicrobial agents. Expert Opin Ther Pat 17:365–369. doi:10.1517/13543776.17.4.365
de Azevedo Wäsch SI, van der Ploeg JR, Maire T, Lebreton A, Kiener A, Leisinger T (2002) Transformation of isopropylamine to L-alaninol by Pseudomonas sp. Strain KIE171 involves N-glutamylated intermediates. Appl Environ Microbiol 68:2368–2375. doi:10.1128/aem.68.5.2368-2375.2002
DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104:19345–19350. doi:10.1073/pnas.0709747104
Dion HW, Woo PWK, Willmer NE, Kern DL, Onaga J, Fusari SA (1972) Butirosin, a new aminoglycosidic antibiotic complex: isolation and characterization. Antimicrob Agents Chemother 2:84–88. doi:10.1128/aac.2.2.84
Donadio S, Maffioli S, Monciardini P, Sosio M, Jabés D (2010) Antibiotic discovery in the twenty-first century: current trends and future perspectives. J Antibiot 63:423–430. doi:10.1038/ja.2010.62
Donadio S, Maffioli S, Monciardini P, Sosio M, Jabés D (2010) Sources of novel antibiotics-aside the common roads. Appl Microbiol Biotechnol 88:1261–1267. doi:10.1007/s00253-010-2877-8
Dong H, Nilsson L, Kurland CG (1996) Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J Mol Biol 260:649–663. doi:10.1006/jmbi.1996.0428
Fawaz MV, Topper ME, Firestine SM (2011) The ATP-grasp enzymes. Bioorg Chem 39:185–191. doi:10.1016/j.bioorg.2011.08.004
Férir G, Petrova MI, Andrei G, Huskens D, Hoorelbeke B, Snoeck R, Vanderleyden J, Balzarini J, Bartoschek S, Brönstrup M, Süssmuth RD, Schols D (2013) The lantibiotic peptide labyrinthopeptin A1 demonstrates broad anti-HIV and anti-HSV activity with potential for microbicidal applications. PLoS One. doi:10.1371/journal.pone.0064010
Fox JT, Stover PJ (2008) Folate-mediated one-carbon metabolism. In: Gerald L (ed) Vitamins & hormones, vol 79. Academic Press, New York, pp 1–44. doi:10.1016/S0083-6729(08)00401-9
Fujii T, Takeo M, Maeda Y (1997) Plasmid-encoded genes specifying aniline oxidation from Acinetobacter sp. strain YAA. Microbiology 143:93–99. doi:10.1099/00221287-143-1-93
Gao JT, Ju KS, Yu XM, Velasquez JE, Mukherjee S, Lee J, Zhao CM, Evans BS, Doroghazi JR, Metcalf WW, van der Donk WA (2014) Use of a phosphonate methyltransferase in the identification of the fosfazinomycin biosynthetic gene cluster. Angew Chem Int Ed 53:1334–1337. doi:10.1002/anie.201308363
Garg N, Salazar-Ocampo LMA, van der Donk WA (2013) In vitro activity of the nisin dehydratase NisB. Proc Natl Acad Sci USA 110:7258–7263. doi:10.1073/pnas.1222488110
Graupner M, White RH (2003) Methanococcus jannaschii coenzyme F420 analogs contain a terminal α-linked glutamate. J Bacteriol 185:4662–4665. doi:10.1128/jb.185.15.4662-4665.2003
Held KD, Biaglow JE (1994) Mechanisms for the oxygen radical-mediated toxicity of various thiol-containing compounds in cultured mammalian cells. Radiat Res 139:15–23. doi:10.2307/3578727
Helling RB (1994) Why does Escherichia coli have two primary pathways for synthesis of glutamate? J Bacteriol 176:4664–4668
Hesketh A, Sun J, Bibb M (2001) Induction of ppGpp synthesis in Streptomyces coelicolor A3(2) grown under conditions of nutritional sufficiency elicits actII-ORF4 transcription and actinorhodin biosynthesis. Mol Microbiol 39:136–144. doi:10.1046/j.1365-2958.2001.02221.x
Horna DH, Gómez C, Olano C, Palomino-Schätzlein M, Pineda-Lucena A, Carbajo RJ, Braña AF, Méndez C, Salas JA (2011) Biosynthesis of the RNA polymerase inhibitor streptolydigin in Streptomyces lydicus: tailoring modification of 3-methyl-aspartate. J Bacteriol 193:2647–2651. doi:10.1128/jb.00108-11
Ibba M, Curnow AW, Söll D (1997) Aminoacyl-tRNA synthesis: divergent routes to a common goal. Trends Biochem Sci 22:39–42. doi:10.1016/S0968-0004(96)20033-7
Iyer LM, Abhiman S, Maxwell Burroughs A, Aravind L (2009) Amidoligases with ATP-grasp, glutamine synthetase-like and acetyltransferase-like domains: synthesis of novel metabolites and peptide modifications of proteins. Mol BioSyst 5:1636–1660. doi:10.1039/b917682a
Jabés D, Brunati C, Candiani G, Riva S, Romanó G, Donadio S (2011) Efficacy of the new lantibiotic NAI-107 in experimental infections induced by multidrug-resistant Gram-positive pathogens. Antimicrob Agents Chemother 55:1671–1676. doi:10.1128/AAC.01288-10
Jahn D, Verkamp E, Söll D (1992) Glutamyl-transfer RNA: a precursor of heme and chlorophyll biosynthesis. Trends Biochem Sci 17:215–218. doi:10.1016/0968-0004(92)90380-R
Janso JE, Haltli BA, Eustáquio AS, Kulowski K, Waldman AJ, Zha L, Nakamura H, Bernan VS, He H, Carter GT, Koehn FE, Balskus EP (2014) Discovery of the lomaiviticin biosynthetic gene cluster in Salinispora pacifica. Tetrahedron 70:4156–4164. doi:10.1016/j.tet.2014.03.009
Jones AM, Helm JM (2009) Emerging treatments in cystic fibrosis. Drugs 69:1903–1910
Kawaguchi H, Naito T, Nakagawa S, Fujisawa KI (1972) BB-K 8, a new semisynthetic aminoglycoside antibiotic. J Antibiot (Tokyo) 25:695–708
Knerr PJ, van der Donk WA (2012) Discovery, biosynthesis, and engineering of lantipeptides. Annu Rev Biochem 81:479–505. doi:10.1146/annurev-biochem-060110-113521
Kumada Y, Benson DR, Hillemann D, Hosted TJ, Rochefort DA, Thompson CJ, Wohlleben W, Tateno Y (1993) Evolution of the glutamine synthetase gene, one of the oldest existing and functioning genes. Proc Natl Acad Sci USA 90:3009–3013
Kurihara S, Oda S, Kato K, Kim HG, Koyanagi T, Kumagai H, Suzuki H (2005) A novel putrescine utilization pathway involves γ-glutamylated intermediates of Escherichia coli K-12. J Biol Chem 280:4602–4608. doi:10.1074/jbc.M411114200
Kurihara S, Oda S, Tsuboi Y, Kim HG, Oshida M, Kumagai H, Suzuki H (2008) γ-Glutamylputrescine synthetase in the putrescine utilization pathway of Escherichia coli K-12. J Biol Chem 283:19981–19990. doi:10.1074/jbc.M800133200
Leigh JA, Rinehart KL, Wolfe RS (1985) Methanofuran (carbon dioxide reduction factor), a formyl carrier in methane production from carbon dioxide in Methanobacterium. Biochemistry 24:995–999. doi:10.1021/bi00325a028
Lessner DJ, Johnson GR, Parales RE, Spain JC, Gibson DT (2002) Molecular characterization and substrate specificity of nitrobenzene dioxygenase from Comamonas sp. strain JS765. Appl Environ Microbiol 68:634–641. doi:10.1128/aem.68.2.634-641.2002
Levicán G, Katz A, Valenzuela P, Söll D, Orellana O (2005) A tRNAGlu that uncouples protein and tetrapyrrole biosynthesis. FEBS Lett 579:6383–6387. doi:10.1016/j.febslet.2005.09.100
Li H, Graupner M, Xu H, White RH (2003) CofE catalyzes the addition of two glutamates to F420-0 in F420 coenzyme biosynthesis in Methanococcus jannaschii. Biochemistry 42:9771–9778. doi:10.1021/bi034779b
Li Y, Llewellyn NM, Giri R, Huang F, Spencer JB (2005) Biosynthesis of the unique amino acid side chain of butirosin: possible protective-group chemistry in an acyl carrier protein-mediated pathway. Chem Biol 12:665–675. doi:10.1016/j.chembiol.2005.04.010
Lin XL, White RH (1986) Occurrence of coenzyme F420 and its gamma-monoglutamyl derivative in nonmethanogenic archaebacteria. J Bacteriol 168:444–448
Llewellyn NM, Li Y, Spencer JB (2007) Biosynthesis of butirosin: transfer and deprotection of the unique amino acid side chain. Chem Biol 14:379–386. doi:10.1016/j.chembiol.2007.02.005
Lubelski J, Rink R, Khusainov R, Moll GN, Kuipers OP (2008) Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin. Cell Mol Life Sci 65:455–476. doi:10.1007/s00018-007-7171-2
Merrick MJ, Edwards RA (1995) Nitrogen control in bacteria. Microbiol Rev 59:604–622
Miller RE, Stadtman ER (1972) Glutamate synthase from Escherichia coli: an iron-sulfide flavoprotein. J Biol Chem 247:7407–7419
Moore BS, Hertweck C (2002) Biosynthesis and attachment of novel bacterial polyketide synthase starter units. Nat Prod Rep 19:70–99. doi:10.1039/B003939J
Nakamura Y, Gojobori T, Ikemura T (2000) Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res 28:292. doi:10.1093/nar/28.1.292
Nocek B, Evdokimova E, Proudfoot M, Kudritska M, Grochowski LL, White RH, Savchenko A, Yakunin AF, Edwards A, Joachimiak A (2007) Structure of an amide bond forming F420:γγ-glutamyl ligase from Archaeoglobus fulgidus—a member of a new family of non-ribosomal peptide synthases. J Mol Biol 372:456–469. doi:10.1016/j.jmb.2007.06.063
Ogasawara Y, Katayama K, Minami A, Otsuka M, Eguchi T, Kakinuma K (2004) Cloning, sequencing, and functional analysis of the biosynthetic gene cluster of macrolactam antibiotic vicenistatin in Streptomyces halstedii. Chem Biol 11:79–86. doi:10.1016/j.chembiol.2003.12.010
Olano C, Gómez C, Pérez M, Palomino M, Pineda-Lucena A, Carbajo RJ, Braña AF, Méndez C, Salas JA (2009) Deciphering biosynthesis of the RNA polymerase inhibitor streptolydigin and generation of glycosylated derivatives. Chem Biol 16:1031–1044. doi:10.1016/j.chembiol.2009.09.015
Oliynyk I, Varelogianni G, Roomans GM, Johannesson M (2010) Effect of duramycin on chloride transport and intracellular calcium concentration in cystic fibrosis and non-cystic fibrosis epithelia. Apmis 118:982–990. doi:10.1111/j.1600-0463.2010.02680.x
Ortega MA, Hao Y, Zhang Q, Walker MC, van der Donk WA, Nair SK (2015) Structure and mechanism of the tRNA-dependent lantibiotic dehydratase NisB. Nature 517:509–512. doi:10.1038/nature13888
Otsuka M, Eguchi T, Shindo K, Kakinuma K (1998) Non-fatty acyl polyketide starter in the biosynthesis of vicenistatin, an antitumor macrolactam antibiotic. Tetrahedron Lett 39:3185–3188. doi:10.1016/S0040-4039(98)00455-9
Parales JV, Parales RE, Resnick SM, Gibson DT (1998) Enzyme specificity of 2-nitrotoluene 2,3-dioxygenase from Pseudomonas sp. strain JS42 is determined by the c-terminal region of the α subunit of the oxygenase component. J Bacteriol 180:1194–1199
Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563. doi:10.1007/s002530051432
Potrykus K, Cashel M (2008) (p)ppGpp: still magical? Annu Rev Microbiol 62:35–51. doi:10.1146/annurev.micro.62.081307.162903
Prinz WA, Åslund F, Holmgren A, Beckwith J (1997) The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem 272:15661–15667. doi:10.1074/jbc.272.25.15661
Reitzer L (2003) Nitrogen assimilation and global regulation in Escherichia coli. Annu Rev Microbiol 57:155–176. doi:10.1146/annurev.micro.57.030502.090820
Sanchez S, Demain AL (2002) Metabolic regulation of fermentation processes. Enzyme Microb Technol 31:895–906. doi:10.1016/S0141-0229(02)00172-2
Schauer S, Chaturvedi S, Randau L, Moser J, Kitabatake M, Lorenz S, Verkamp E, Schubert W-D, Nakayashiki T, Murai M, Wall K, Thomann H-U, Heinz DW, Inokuchi H, Söll D, Jahn D (2002) Escherichia coli glutamyl-tRNA reductase: trapping the thioester intermediate. J Biol Chem 277:48657–48663. doi:10.1074/jbc.M206924200
Schirch V, Strong WB (1989) Interaction of folylpolyglutamates with enzymes in one-carbon metabolism. Arch Biochem Biophys 269:371–380. doi:10.1016/0003-9861(89)90120-3
Shaibe E, Metzer E, Halpern YS (1985) Metabolic pathway for the utilization of l-arginine, l-ornithine, agmatine, and putrescine as nitrogen sources in Escherichia coli K-12. J Bacteriol 163:933–937
Shapir N, Mongodin EF, Sadowsky MJ, Daugherty SC, Nelson KE, Wackett LP (2007) Evolution of catabolic pathways: genomic insights into microbial s-triazine metabolism. J Bacteriol 189:674–682. doi:10.1128/jb.01257-06
Shinohara Y, Kudo F, Eguchi T (2011) A natural protecting group strategy to carry an amino acid starter unit in the biosynthesis of macrolactam polyketide antibiotics. J Am Chem Soc 133:18134–18137. doi:10.1021/ja208927r
Sieber SA, Marahiel MA (2005) Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem Rev 105:715–738. doi:10.1021/cr0301191
Skellam EJ, Stewart AK, Strangman WK, Wright JLC (2013) Identification of micromonolactam, a new polyene macrocyclic lactam from two marine Micromonospora strains using chemical and molecular methods: clarification of the biosynthetic pathway from a glutamate starter unit. J Antibiot 66:431–441. doi:10.1038/ja.2013.34
Smith CA (2006) Structure, function and dynamics in the mur family of bacterial cell wall ligases. J Mol Biol 362:640–655. doi:10.1016/j.jmb.2006.07.066
Smith MA, Kannangara CG, Grimm B (1992) Glutamate 1-semialdehyde aminotransferase: anomalous enantiomeric reaction and enzyme mechanism. Biochemistry 31:11249–11254. doi:10.1021/bi00160a041
Sundquist AR, Fahey RC (1989) The function of gamma-glutamylcysteine and bis-gamma-glutamylcystine reductase in Halobacterium halobium. J Biol Chem 264:719–725
Suzuki H, Kurihara S (2015) Polyamine catabolism in prokaryotes. In: Kusano T, Suzuki H (eds) Polyamines. Springer, Tokyo, pp 47–59. doi:10.1007/978-4-431-55212-3_4
Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53:749–790. doi:10.1146/annurev.bi.53.070184.003533
Takaishi M, Kudo F, Eguchi T (2012) A unique pathway for the 3-aminobutyrate starter unit from L-glutamate through β-glutamate during biosynthesis of the 24-membered macrolactam antibiotic, incednine. Org Lett 14:4591–4593. doi:10.1021/ol302052c
Takaishi M, Kudo F, Eguchi T (2013) Identification of the incednine biosynthetic gene cluster: characterization of novel β-glutamate-β-decarboxylase IdnL3. J Antibiot 66:691–699. doi:10.1038/ja.2013.76
Takeo M, Ohara A, Sakae S, Okamoto Y, Kitamura C, D-i Kato, Negoro S (2013) Function of a glutamine synthetase-like protein in bacterial aniline oxidation via γ-glutamylanilide. J Bacteriol 195:4406–4414. doi:10.1128/jb.00397-13
Tang L, Hutchinson CR (1993) Sequence, transcriptional, and functional analyses of the valine (branched-chain amino acid) dehydrogenase gene of Streptomyces coelicolor. J Bacteriol 175:4176–4185
Umbarger HE (1978) Amino acid biosynthesis and its regulation. Annu Rev Biochem 47:533–606. doi:10.1146/annurev.bi.47.070178.002533
van Eunen K, Bouwman J, Daran-Lapujade P, Postmus J, Canelas AB, Mensonides FIC, Orij R, Tuzun I, van den Brink J, Smits GJ, van Gulik WM, Brul S, Heijnen JJ, de Winde JH, Teixeira de Mattos MJ, Kettner C, Nielsen J, Westerhoff HV, Bakker BM (2010) Measuring enzyme activities under standardized in vivo-like conditions for systems biology. FEBS J 277:749–760. doi:10.1111/j.1742-4658.2009.07524.x
van Wezel GP, McDowall KJ (2011) The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28:1311–1333. doi:10.1039/C1NP00003A
van Wezel GP, Krabben P, Traag BA, Keijser BJF, Kerste R, Vijgenboom E, Heijnen JJ, Kraal B (2006) Unlocking Streptomyces spp. for use as sustainable industrial production platforms by morphological engineering. Appl Environ Microbiol 72:5283–5288. doi:10.1128/aem.00808-06
Vanoni MA, Curti B (1999) Glutamate synthase: a complex iron-sulfur flavoprotein. Cell Mol Life Sci 55:617–638. doi:10.1007/s000180050319
Wang Y, Xu H, Harich KC, White RH (2014) Identification and characterization of a tyramine–glutamate ligase (MfnD) involved in methanofuran biosynthesis. Biochemistry 53:6220–6230. doi:10.1021/bi500879h
White RH (1988) Structural diversity among methanofurans from different methanogenic bacteria. J Bacteriol 170:4594–4597
Yao X, He W, Lu C-D (2011) Functional characterization of seven γ-glutamylpolyamine synthetase genes and the bauRABCD locus for polyamine and β-alanine utilization in Pseudomonas aeruginosa PAO1. J Bacteriol 193:3923–3930. doi:10.1128/jb.05105-11
Yarzábal A, Brasseur G, Bonnefoy V (2002) Cytochromes c of Acidithiobacillus ferrooxidans, vol 209. FEMS Microbiol Lett. doi:10.1111/j.1574-6968.2002.tb11130.x
Zhang Q, Doroghazi JR, Zhao X, Walker MC, van der Donk WA (2015) Expanded natural product diversity revealed by analysis of lanthipeptide-like gene clusters in Actinobacteria. Appl Environ Microbiol. doi:10.1128/AEM.00635-15
Author information
Authors and Affiliations
Corresponding author
Additional information
Special Issue: Natural Product Discovery and Development in the Genomic Era. Dedicated to Professor Satoshi Ōmura for his numerous contributions to the field of natural products.
Rights and permissions
About this article
Cite this article
Walker, M.C., van der Donk, W.A. The many roles of glutamate in metabolism. J Ind Microbiol Biotechnol 43, 419–430 (2016). https://doi.org/10.1007/s10295-015-1665-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10295-015-1665-y