Bavčar D, Baša Česnik H, Čuš F, Košmerl T (2011) The influence of skin contact during alcoholic fermentation on the aroma composition of Ribolla Gialla and Malvasia Istriana Vitis vinifera (L.) grape wines. Int J Food Sci Technol 46:1801–1808. doi:10.1111/j.1365-2621.2011.02679.x
Article
Google Scholar
Beckner M, Ivey ML, Phister TG (2011) Microbial contamination of fuel ethanol fermentations. Lett Appl Microbiol 53:387–394. doi:10.1111/j.1472-765X.2011.03124.x
CAS
PubMed
Article
Google Scholar
Bely M, Stoeckle P, Masneuf-Pomarède I, Dubourdieu D (2008) Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation. Int J Food Microbiol 122:312–320. doi:10.1016/j.ijfoodmicro.2007.12.023
CAS
PubMed
Article
Google Scholar
Benda I (1982) Wine and brandy. In: Prescott SC, Dunn CG, Reed G (eds) Prescott & Dunn’s industrial microbiology, 4th edn. AVI Publishing Co., Westport, CN
Google Scholar
Blomqvist J, Eberhard T, Schnürer J, Passoth V (2010) Fermentation characteristics of Dekkera bruxellensis strains. Appl Microbiol Biotechnol 87:1487–1497. doi:10.1007/s00253-010-2619-y
CAS
PubMed
Article
Google Scholar
Boekhout T, Kurtzman CP, O’Donnell K, Smith MT (1994) Phylogeny of the yeast genera Hanseniaspora (anamorph Kloeckera), Dekkera (anamorph Brettanomyces), and Eeniella as inferred from partial 26S ribosomal DNA nucleotide sequences. Int J Syst Bacteriol 44:781–786
CAS
PubMed
Article
Google Scholar
Comitini F, Gobbi M, Domizio P, Romani C, Lencioni L, Mannazzu I, Ciani M (2011) Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Food Microbiol 28:873–882. doi:10.1016/j.fm.2010.12.001
CAS
PubMed
Article
Google Scholar
Conant GC, Wolfe KH (2007) Increased glycolytic flux as an outcome of whole-genome duplication in yeast. Mol Syst Biol. doi:10.1038/msb4100170
PubMed Central
PubMed
Google Scholar
Coutinho R, Branco P, Monteiro M, Malfeito-Ferreira M, Albergaria H (2013) Saccharomyces cerevisiae and Dekkera bruxellensis interactions in alcoholic fermentations: growth and 4-ethylphenol production. MicroBiotec’13: Portuguese Congress of Microbiology and Biotechnology, Aveiro, Portugal, p 94
Dairou V, Sieffermann J-M (2002) A comparison of 14 jams characterized by conventional profile and a quick original method, the flash profile. J Food Sci 67:826–834. doi:10.1111/j.1365-2621.2002.tb10685.x
CAS
Article
Google Scholar
Dashko S, Zhou N, Compagno C, Piškur J (2014) Why, when, and how did yeast evolve alcoholic fermentation? FEMS Yeast Res 14:826–832. doi:10.1111/1567-1364.12161
CAS
PubMed Central
PubMed
Article
Google Scholar
De Deken RH (1966) The Crabtree effect: a regulatory system in yeast. J Gen Microbiol 44:149–156
PubMed
Article
Google Scholar
Van Dijken JP, Scheffers WA (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Lett 32:199–224. doi:10.1111/j.1574-6968.1986.tb01194.x
Article
Google Scholar
Domizio P, Romani C, Lencioni L, Comitini F, Gobbi M, Mannazzu I, Ciani M (2011) Outlining a future for non-Saccharomyces yeasts: selection of putative spoilage wine strains to be used in association with Saccharomyces cerevisiae for grape juice fermentation. Int J Food Microbiol 147:170–180. doi:10.1016/j.ijfoodmicro.2011.03.020
CAS
PubMed
Article
Google Scholar
Fleet GH (2003) Yeast interactions and wine flavour. Int J Food Microbiol 86:11–22
CAS
PubMed
Article
Google Scholar
Galafassi S, Merico A, Pizza F, Hellborg L, Molinari F, Piškur J, Compagno C (2011) Dekkera/Brettanomyces yeasts for ethanol production from renewable sources under oxygen-limited and low-pH conditions. J Ind Microbiol Biotechnol 38:1079–1088. doi:10.1007/s10295-010-0885-4
CAS
PubMed
Article
Google Scholar
Gobbi M, Comitini F, Domizio P, Romani C, Lencioni L, Mannazzu I, Ciani M (2013) Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: a strategy to enhance acidity and improve the overall quality of wine. Food Microbiol 33:271–281. doi:10.1016/j.fm.2012.10.004
CAS
PubMed
Article
Google Scholar
Gobbi M, De Vero L, Solieri L, Comitini F, Oro L, Giudici P, Ciani M (2014) Fermentative aptitude of non-Saccharomycescerevisiae wine yeasts for reduction in ethanol content in wine. Eur Food Res, Technol
Google Scholar
Godoy L, Martínez C, Carrasco N, Ganga MA (2008) Purification and characterization of a p-coumarate decarboxylase and a vinylphenol reductase from Brettanomyces bruxellensis. Int J Food Microbiol 127:6–11. doi:10.1016/j.ijfoodmicro.2008.05.011
CAS
PubMed
Article
Google Scholar
Guillaume C, Delobel P, Sablayrolles J-M, Blondin B (2007) Molecular basis of fructose utilization by the wine yeast Saccharomyces cerevisiae: a mutated HXT3allele enhances fructose fermentation. Appl Environ Microbiol 73:2432–2439. doi:10.1128/AEM.02269-06
CAS
PubMed Central
PubMed
Article
Google Scholar
Hagman A, Säll T, Compagno C, Piskur J (2013) Yeast “make-accumulate-consume” life strategy evolved as a multi-step process that predates the whole genome duplication. PLoS One 8:e68734. doi:10.1371/journal.pone.0068734
CAS
PubMed Central
PubMed
Article
Google Scholar
Van Hoek P, Van Dijken JP, Pronk JT (1998) Effect of specific growth rate on fermentative capacity of baker’s yeast. Appl Environ Microbiol 64:4226–4233
PubMed Central
PubMed
Google Scholar
Jolly NP, Varela C, Pretorius IS (2014) Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res 14:215–237. doi:10.1111/1567-1364.12111
CAS
PubMed
Article
Google Scholar
Jussier D, Dubé Morneau A, Mira de Orduña R (2006) Effect of simultaneous inoculation with yeast and bacteria on fermentation kinetics and key wine parameters of cool-climate Chardonnay. Appl Environ Microbiol 72:221–227. doi:10.1128/AEM.72.1.221-227.2006
CAS
PubMed Central
PubMed
Article
Google Scholar
Kim D-H, Hong Y-A, Park H-D (2008) Co-fermentation of grape must by Issatchenkia orientalis and Saccharomyces cerevisiae reduces the malic acid content in wine. Biotechnol Lett 30:1633–1638. doi:10.1007/s10529-008-9726-1
CAS
PubMed
Article
Google Scholar
Kurtzman CP, Robnett CJ (1997) Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5′ end of the large-subunit (26S) ribosomal DNA gene. J Clin Microbiol 35:1216–1223
CAS
PubMed Central
PubMed
Google Scholar
Kurtzman CP, Robnett CJ (2003) Phylogenetic relationships among yeasts of the “Saccharomyces complex” determined from multigene sequence analyses. FEMS Yeast Res 3:417–432
CAS
PubMed
Article
Google Scholar
Lambrechts MG, Pretorius IS (2000) Yeast and its importance to wine aroma—a review. South Afr J Enol Vitic, South Afr
Google Scholar
Lawless HTHH (2010) Sensory evaluation of food—principles and practices. Springer Science and Business Media, New York
Book
Google Scholar
Luca Riccardo Formenti AN (2014) Challenges in industrial fermentation technology research. Biotechnol J. doi:10.1002/biot.201300236
PubMed
Google Scholar
Øyvind Langsrud TN (1998) A unified framework for significance testing in fractional factorials. Comput Stat Amp Data Anal. doi:10.1016/S0167-9473(98)90151-7
Google Scholar
Pao SS, Paulsen IT, Saier MH (1998) Major Facilitator Superfamily. Microbiol Mol Biol Rev 62:1–34
CAS
PubMed Central
PubMed
Google Scholar
Piskur J, Langkjaer RB (2004) Yeast genome sequencing: the power of comparative genomics. Mol Microbiol 53:381–389. doi:10.1111/j.1365-2958.2004.04182.x
CAS
PubMed
Article
Google Scholar
Piskur J, Rozpedowska E, Polakova S, Merico A, Compagno C (2006) How did Saccharomyces evolve to become a good brewer? Trends Genet TIG 22:183–186. doi:10.1016/j.tig.2006.02.002
CAS
Article
Google Scholar
Rainieri S, Pretorius IS (2000) Selection and improvement of wine yeasts. Ann Microbiol 50:15–31
CAS
Google Scholar
Rantsiou K, Dolci P, Giacosa S, Torchio F, Tofalo R, Torriani S, Suzzi G, Rolle L, Cocolin L (2012) Candida zemplinina can reduce acetic acid produced by Saccharomyces cerevisiae in sweet wine fermentations. Appl Environ Microbiol 78:1987–1994. doi:10.1128/AEM.06768-11
CAS
PubMed Central
PubMed
Article
Google Scholar
Ravasio D, Walther A, Trost K, Vrhovsek U, Wendland J (2014) An indirect assay for volatile compound production in yeast strains. Sci Rep 4:3707. doi:10.1038/srep03707
PubMed Central
PubMed
Article
Google Scholar
Romano A, Perello MC, Lonvaud-Funel A, Sicard G, de Revel G (2009) Sensory and analytical re-evaluation of “Brett character”. Food Chem 114:15–19. doi:10.1016/j.foodchem.2008.09.006
CAS
Article
Google Scholar
Rozpędowska E, Hellborg L, Ishchuk OP, Orhan F, Galafassi S, Merico A, Woolfit M, Compagno C, Piskur J (2011) Parallel evolution of the make-accumulate-consume strategy in Saccharomyces and Dekkera yeasts. Nat Commun 2:302. doi:10.1038/ncomms1305
PubMed Central
PubMed
Article
Google Scholar
Schifferdecker AJ, Dashko S, Ishchuk OP, Piškur J (2014) The wine and beer yeast Dekkera bruxellensis: the wine and beer yeast Dekkera bruxellensis. Yeast 31:323–332. doi:10.1002/yea.3023
CAS
PubMed Central
PubMed
Article
Google Scholar
Semchyshyn HM, Abrat OB, Miedzobrodzki J, Inoue Y, Lushchak VI (2011) Acetate but not propionate induces oxidative stress in bakers’ yeast Saccharomyces cerevisiae. Redox Rep Commun Free Radic Res 16:15–23. doi:10.1179/174329211X12968219310954
CAS
Article
Google Scholar
Sousa-Dias SGT (1996) Kinetics and regulation of fructose and glucose transport systems are responsible for fructophily in Zygosaccharomyces bailii. Microbiol-Sgm 142:1733–1738. doi:10.1099/13500872-142-7-1733
CAS
Article
Google Scholar
Stone H, Sidel JL (1998) Quantitative descriptive analysis: developments, applications and the future. Food Technol, USA
Google Scholar
Suárez R, Suárez-Lepe JA, Morata A, Calderón F (2007) The production of ethylphenols in wine by yeasts of the genera Brettanomyces and Dekkera: a review. Food Chem 102:10–21. doi:10.1016/j.foodchem.2006.03.030
Article
Google Scholar
Tiukova IA, Petterson ME, Tellgren-Roth C, Bunikis I, Eberhard T, Pettersson OV, Passoth V (2013) Transcriptome of the alternative ethanol production strain Dekkera bruxellensis CBS 11270 in sugar limited, low oxygen cultivation. PLoS One 8:e58455. doi:10.1371/journal.pone.0058455
CAS
PubMed Central
PubMed
Article
Google Scholar
Toro ME, Vazquez F (2002) Fermentation behaviour of controlled mixed and sequential cultures of Candida cantarellii and Saccharomyces cerevisiae wine yeasts. World J Microbiol Biotechnol 18:351–358. doi:10.1023/A:1015242818473
Article
Google Scholar
Verduyn C, Postma E, Scheffers WA, Van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast Chichester Engl 8:501–517. doi:10.1002/yea.320080703
CAS
Article
Google Scholar
Wedzicha BL (1984) Chemistry of sulphur dioxide in foods. Elsevier Applied Science, London, New York
Google Scholar
Wehrens R, Weingart G, Mattivi F (2014) metaMS: an open-source pipeline for GC–MS-based untargeted metabolomics. J Chromatogr B 966:109–116. doi:10.1016/j.jchromb.2014.02.051
CAS
Article
Google Scholar
White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Shinsky J, White T (eds) PCR Protoc. Academic Press, Guide Methods Appl, pp 315–322
Google Scholar
Wolfe K (2004) Evolutionary genomics: yeasts accelerate beyond BLAST. Curr Biol CB 14:R392–R394. doi:10.1016/j.cub.2004.05.015
CAS
Article
Google Scholar
Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713. doi:10.1038/42711
CAS
PubMed
Article
Google Scholar
Yamaoka C, Kurita O, Kubo T (2014) Improved ethanol tolerance of Saccharomyces cerevisiae in mixed cultures with Kluyveromyces lactis on high-sugar fermentation. Microbiol Res 169:907–914. doi:10.1016/j.micres.2014.04.007
CAS
PubMed
Article
Google Scholar
Green SR, Gray PP (1950) A differential procedure applicable to bacteriological investigation in brewing. Wallerstein Lab. Commun 13:357
Gamero Lluna A, de Jong C (2013) Novel yeasts, novel flavours. New Food Mag. 16(3)26–28