Skip to main content

Use of non-conventional yeast improves the wine aroma profile of Ribolla Gialla


Consumer wine preferences are changing rapidly towards exotic flavours and tastes. In this work, we tested five non-conventional yeast strains for their potential to improve Ribolla Gialla wine quality. These strains were previously selected from numerous yeasts interesting as food production candidates. Sequential fermentation of Ribolla Gialla grape juice with the addition of the Saccharomyces cerevisiae T73 Lalvin industrial strain was performed. Zygosaccharomyces kombuchaensis CBS8849 and Kazachstania gamospora CBS10400 demonstrated positive organoleptic properties and suitable fermentation dynamics, rapid sugar consumption and industrial strain compatibility. At the same time, Torulaspora microellipsoides CBS6641, Dekkera bruxellensis CBS2796 and Dekkera anomala CBS77 were unsuitable for wine production because of poor fermentation dynamics, inefficient sugar consumption and ethanol production levels and major organoleptic defects. Thus, we selected strains of K. gamospora and Z. kombuchaensis that significantly improved the usually plain taste of Ribolla wine by providing additional aromatic complexity in a controlled and reproducible manner.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Bavčar D, Baša Česnik H, Čuš F, Košmerl T (2011) The influence of skin contact during alcoholic fermentation on the aroma composition of Ribolla Gialla and Malvasia Istriana Vitis vinifera (L.) grape wines. Int J Food Sci Technol 46:1801–1808. doi:10.1111/j.1365-2621.2011.02679.x

    Article  Google Scholar 

  2. Beckner M, Ivey ML, Phister TG (2011) Microbial contamination of fuel ethanol fermentations. Lett Appl Microbiol 53:387–394. doi:10.1111/j.1472-765X.2011.03124.x

    CAS  PubMed  Article  Google Scholar 

  3. Bely M, Stoeckle P, Masneuf-Pomarède I, Dubourdieu D (2008) Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation. Int J Food Microbiol 122:312–320. doi:10.1016/j.ijfoodmicro.2007.12.023

    CAS  PubMed  Article  Google Scholar 

  4. Benda I (1982) Wine and brandy. In: Prescott SC, Dunn CG, Reed G (eds) Prescott & Dunn’s industrial microbiology, 4th edn. AVI Publishing Co., Westport, CN

    Google Scholar 

  5. Blomqvist J, Eberhard T, Schnürer J, Passoth V (2010) Fermentation characteristics of Dekkera bruxellensis strains. Appl Microbiol Biotechnol 87:1487–1497. doi:10.1007/s00253-010-2619-y

    CAS  PubMed  Article  Google Scholar 

  6. Boekhout T, Kurtzman CP, O’Donnell K, Smith MT (1994) Phylogeny of the yeast genera Hanseniaspora (anamorph Kloeckera), Dekkera (anamorph Brettanomyces), and Eeniella as inferred from partial 26S ribosomal DNA nucleotide sequences. Int J Syst Bacteriol 44:781–786

    CAS  PubMed  Article  Google Scholar 

  7. Comitini F, Gobbi M, Domizio P, Romani C, Lencioni L, Mannazzu I, Ciani M (2011) Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Food Microbiol 28:873–882. doi:10.1016/

    CAS  PubMed  Article  Google Scholar 

  8. Conant GC, Wolfe KH (2007) Increased glycolytic flux as an outcome of whole-genome duplication in yeast. Mol Syst Biol. doi:10.1038/msb4100170

    PubMed Central  PubMed  Google Scholar 

  9. Coutinho R, Branco P, Monteiro M, Malfeito-Ferreira M, Albergaria H (2013) Saccharomyces cerevisiae and Dekkera bruxellensis interactions in alcoholic fermentations: growth and 4-ethylphenol production. MicroBiotec’13: Portuguese Congress of Microbiology and Biotechnology, Aveiro, Portugal, p 94

  10. Dairou V, Sieffermann J-M (2002) A comparison of 14 jams characterized by conventional profile and a quick original method, the flash profile. J Food Sci 67:826–834. doi:10.1111/j.1365-2621.2002.tb10685.x

    CAS  Article  Google Scholar 

  11. Dashko S, Zhou N, Compagno C, Piškur J (2014) Why, when, and how did yeast evolve alcoholic fermentation? FEMS Yeast Res 14:826–832. doi:10.1111/1567-1364.12161

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  12. De Deken RH (1966) The Crabtree effect: a regulatory system in yeast. J Gen Microbiol 44:149–156

    PubMed  Article  Google Scholar 

  13. Van Dijken JP, Scheffers WA (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Lett 32:199–224. doi:10.1111/j.1574-6968.1986.tb01194.x

    Article  Google Scholar 

  14. Domizio P, Romani C, Lencioni L, Comitini F, Gobbi M, Mannazzu I, Ciani M (2011) Outlining a future for non-Saccharomyces yeasts: selection of putative spoilage wine strains to be used in association with Saccharomyces cerevisiae for grape juice fermentation. Int J Food Microbiol 147:170–180. doi:10.1016/j.ijfoodmicro.2011.03.020

    CAS  PubMed  Article  Google Scholar 

  15. Fleet GH (2003) Yeast interactions and wine flavour. Int J Food Microbiol 86:11–22

    CAS  PubMed  Article  Google Scholar 

  16. Galafassi S, Merico A, Pizza F, Hellborg L, Molinari F, Piškur J, Compagno C (2011) Dekkera/Brettanomyces yeasts for ethanol production from renewable sources under oxygen-limited and low-pH conditions. J Ind Microbiol Biotechnol 38:1079–1088. doi:10.1007/s10295-010-0885-4

    CAS  PubMed  Article  Google Scholar 

  17. Gobbi M, Comitini F, Domizio P, Romani C, Lencioni L, Mannazzu I, Ciani M (2013) Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: a strategy to enhance acidity and improve the overall quality of wine. Food Microbiol 33:271–281. doi:10.1016/

    CAS  PubMed  Article  Google Scholar 

  18. Gobbi M, De Vero L, Solieri L, Comitini F, Oro L, Giudici P, Ciani M (2014) Fermentative aptitude of non-Saccharomycescerevisiae wine yeasts for reduction in ethanol content in wine. Eur Food Res, Technol

    Google Scholar 

  19. Godoy L, Martínez C, Carrasco N, Ganga MA (2008) Purification and characterization of a p-coumarate decarboxylase and a vinylphenol reductase from Brettanomyces bruxellensis. Int J Food Microbiol 127:6–11. doi:10.1016/j.ijfoodmicro.2008.05.011

    CAS  PubMed  Article  Google Scholar 

  20. Guillaume C, Delobel P, Sablayrolles J-M, Blondin B (2007) Molecular basis of fructose utilization by the wine yeast Saccharomyces cerevisiae: a mutated HXT3allele enhances fructose fermentation. Appl Environ Microbiol 73:2432–2439. doi:10.1128/AEM.02269-06

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  21. Hagman A, Säll T, Compagno C, Piskur J (2013) Yeast “make-accumulate-consume” life strategy evolved as a multi-step process that predates the whole genome duplication. PLoS One 8:e68734. doi:10.1371/journal.pone.0068734

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  22. Van Hoek P, Van Dijken JP, Pronk JT (1998) Effect of specific growth rate on fermentative capacity of baker’s yeast. Appl Environ Microbiol 64:4226–4233

    PubMed Central  PubMed  Google Scholar 

  23. Jolly NP, Varela C, Pretorius IS (2014) Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res 14:215–237. doi:10.1111/1567-1364.12111

    CAS  PubMed  Article  Google Scholar 

  24. Jussier D, Dubé Morneau A, Mira de Orduña R (2006) Effect of simultaneous inoculation with yeast and bacteria on fermentation kinetics and key wine parameters of cool-climate Chardonnay. Appl Environ Microbiol 72:221–227. doi:10.1128/AEM.72.1.221-227.2006

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  25. Kim D-H, Hong Y-A, Park H-D (2008) Co-fermentation of grape must by Issatchenkia orientalis and Saccharomyces cerevisiae reduces the malic acid content in wine. Biotechnol Lett 30:1633–1638. doi:10.1007/s10529-008-9726-1

    CAS  PubMed  Article  Google Scholar 

  26. Kurtzman CP, Robnett CJ (1997) Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5′ end of the large-subunit (26S) ribosomal DNA gene. J Clin Microbiol 35:1216–1223

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Kurtzman CP, Robnett CJ (2003) Phylogenetic relationships among yeasts of the “Saccharomyces complex” determined from multigene sequence analyses. FEMS Yeast Res 3:417–432

    CAS  PubMed  Article  Google Scholar 

  28. Lambrechts MG, Pretorius IS (2000) Yeast and its importance to wine aroma—a review. South Afr J Enol Vitic, South Afr

    Google Scholar 

  29. Lawless HTHH (2010) Sensory evaluation of food—principles and practices. Springer Science and Business Media, New York

    Book  Google Scholar 

  30. Luca Riccardo Formenti AN (2014) Challenges in industrial fermentation technology research. Biotechnol J. doi:10.1002/biot.201300236

    PubMed  Google Scholar 

  31. Øyvind Langsrud TN (1998) A unified framework for significance testing in fractional factorials. Comput Stat Amp Data Anal. doi:10.1016/S0167-9473(98)90151-7

    Google Scholar 

  32. Pao SS, Paulsen IT, Saier MH (1998) Major Facilitator Superfamily. Microbiol Mol Biol Rev 62:1–34

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Piskur J, Langkjaer RB (2004) Yeast genome sequencing: the power of comparative genomics. Mol Microbiol 53:381–389. doi:10.1111/j.1365-2958.2004.04182.x

    CAS  PubMed  Article  Google Scholar 

  34. Piskur J, Rozpedowska E, Polakova S, Merico A, Compagno C (2006) How did Saccharomyces evolve to become a good brewer? Trends Genet TIG 22:183–186. doi:10.1016/j.tig.2006.02.002

    CAS  Article  Google Scholar 

  35. Rainieri S, Pretorius IS (2000) Selection and improvement of wine yeasts. Ann Microbiol 50:15–31

    CAS  Google Scholar 

  36. Rantsiou K, Dolci P, Giacosa S, Torchio F, Tofalo R, Torriani S, Suzzi G, Rolle L, Cocolin L (2012) Candida zemplinina can reduce acetic acid produced by Saccharomyces cerevisiae in sweet wine fermentations. Appl Environ Microbiol 78:1987–1994. doi:10.1128/AEM.06768-11

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  37. Ravasio D, Walther A, Trost K, Vrhovsek U, Wendland J (2014) An indirect assay for volatile compound production in yeast strains. Sci Rep 4:3707. doi:10.1038/srep03707

    PubMed Central  PubMed  Article  Google Scholar 

  38. Romano A, Perello MC, Lonvaud-Funel A, Sicard G, de Revel G (2009) Sensory and analytical re-evaluation of “Brett character”. Food Chem 114:15–19. doi:10.1016/j.foodchem.2008.09.006

    CAS  Article  Google Scholar 

  39. Rozpędowska E, Hellborg L, Ishchuk OP, Orhan F, Galafassi S, Merico A, Woolfit M, Compagno C, Piskur J (2011) Parallel evolution of the make-accumulate-consume strategy in Saccharomyces and Dekkera yeasts. Nat Commun 2:302. doi:10.1038/ncomms1305

    PubMed Central  PubMed  Article  Google Scholar 

  40. Schifferdecker AJ, Dashko S, Ishchuk OP, Piškur J (2014) The wine and beer yeast Dekkera bruxellensis: the wine and beer yeast Dekkera bruxellensis. Yeast 31:323–332. doi:10.1002/yea.3023

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  41. Semchyshyn HM, Abrat OB, Miedzobrodzki J, Inoue Y, Lushchak VI (2011) Acetate but not propionate induces oxidative stress in bakers’ yeast Saccharomyces cerevisiae. Redox Rep Commun Free Radic Res 16:15–23. doi:10.1179/174329211X12968219310954

    CAS  Article  Google Scholar 

  42. Sousa-Dias SGT (1996) Kinetics and regulation of fructose and glucose transport systems are responsible for fructophily in Zygosaccharomyces bailii. Microbiol-Sgm 142:1733–1738. doi:10.1099/13500872-142-7-1733

    CAS  Article  Google Scholar 

  43. Stone H, Sidel JL (1998) Quantitative descriptive analysis: developments, applications and the future. Food Technol, USA

    Google Scholar 

  44. Suárez R, Suárez-Lepe JA, Morata A, Calderón F (2007) The production of ethylphenols in wine by yeasts of the genera Brettanomyces and Dekkera: a review. Food Chem 102:10–21. doi:10.1016/j.foodchem.2006.03.030

    Article  Google Scholar 

  45. Tiukova IA, Petterson ME, Tellgren-Roth C, Bunikis I, Eberhard T, Pettersson OV, Passoth V (2013) Transcriptome of the alternative ethanol production strain Dekkera bruxellensis CBS 11270 in sugar limited, low oxygen cultivation. PLoS One 8:e58455. doi:10.1371/journal.pone.0058455

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  46. Toro ME, Vazquez F (2002) Fermentation behaviour of controlled mixed and sequential cultures of Candida cantarellii and Saccharomyces cerevisiae wine yeasts. World J Microbiol Biotechnol 18:351–358. doi:10.1023/A:1015242818473

    Article  Google Scholar 

  47. Verduyn C, Postma E, Scheffers WA, Van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast Chichester Engl 8:501–517. doi:10.1002/yea.320080703

    CAS  Article  Google Scholar 

  48. Wedzicha BL (1984) Chemistry of sulphur dioxide in foods. Elsevier Applied Science, London, New York

    Google Scholar 

  49. Wehrens R, Weingart G, Mattivi F (2014) metaMS: an open-source pipeline for GC–MS-based untargeted metabolomics. J Chromatogr B 966:109–116. doi:10.1016/j.jchromb.2014.02.051

    CAS  Article  Google Scholar 

  50. White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Shinsky J, White T (eds) PCR Protoc. Academic Press, Guide Methods Appl, pp 315–322

    Google Scholar 

  51. Wolfe K (2004) Evolutionary genomics: yeasts accelerate beyond BLAST. Curr Biol CB 14:R392–R394. doi:10.1016/j.cub.2004.05.015

    CAS  Article  Google Scholar 

  52. Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713. doi:10.1038/42711

    CAS  PubMed  Article  Google Scholar 

  53. Yamaoka C, Kurita O, Kubo T (2014) Improved ethanol tolerance of Saccharomyces cerevisiae in mixed cultures with Kluyveromyces lactis on high-sugar fermentation. Microbiol Res 169:907–914. doi:10.1016/j.micres.2014.04.007

    CAS  PubMed  Article  Google Scholar 

  54. Green SR, Gray PP (1950) A differential procedure applicable to bacteriological investigation in brewing. Wallerstein Lab. Commun 13:357

  55. Gamero Lluna A, de Jong C (2013) Novel yeasts, novel flavours. New Food Mag. 16(3)26–28

Download references


This work was supported by the Slovenian Research Agency (project number J4-4300) and by the EU ITN “Cornucopia” project (FP7, grant agreement GA264717), Creative Core programme (AHA-MOMENT) contract no. 3330-13-500031, co-supported by RS-MIZS and European Regional Development Fund Research. We would like to thank Justin Fay for providing useful advice and corrections during the writing process. We greatly appreciate the access to the yeast strains provided by CBS-KNAW Fungal Biodiversity Centre ( We are especially grateful to the late Jure Piškur, who was our main inspiration and project leader and who is greatly missed.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sofia Dashko.

Electronic supplementary material

Below is the link to the electronic supplementary material.


Supplementary material 1 (PDF 124 kb). Weight loss during the fermentation of laboratory-scale fermentations performed with D. anomala (CBS77), D. bruxellensis (CBS2796), K. gamospora (CBS10400), T. microellipsoides (CBS6641), Z. kombuchaensis (CBS8849). The steeper is the curve the higher is fermentation dynamic of the sample


Supplementary material 2 (PDF 349 kb). PCA plot with most influential loadings of six yeast species based on the major volatiles formed during the fermentation process. Fermentation samples produced with DA - D. anomala (CBS77), DB - D. bruxellensis (CBS2796), KG - K. gamospora (CBS10400), TM - T. microellipsoides (CBS6641), ZK - Z. kombuchaensis (CBS8849)


Supplementary material 3 (PDF 279 kb). Results of sensory evaluation of young wines using hedonic scale method. 1 – least preferred sample, 10 – most preferred one. (a) evaluation of “smell” attribute in six samples of the young wines. (b) evaluation of “color” attribute in six samples of the young wines. Fermentation samples produced with DA - D. anomala (CBS77), DB - D. bruxellensis (CBS2796), KG - K. gamospora (CBS10400), TM - T. microellipsoides (CBS6641), ZK - Z. kombuchaensis (CBS8849)


Supplementary material 4 (PDF 348 kb). PCA plot demonstrating patterns of variations of sensory attributes. (a) Z. kombuchaensis (CBS8849) and K. gamospora(CBS10400) are mostly impacting aroma attribute (in red), in less extent attributes of color (in blue) and taste (in green). (b) wines produced with K. gamospora are more distinguishable from S. cerevisiae Lalvin T73 produced wines in comparison to Z. kombuchaensis samples


Supplementary material 5 (PDF 104 kb). Levels of sugars and ethanol in the pilot scale fermentation samples fermented with K. gamospora (CBS10400), Z. kombuchaensis (CBS8849) and S. cerevisiae Lalvin T73 after 350 h of fermentation. Statistical groups determined using LSD test


Supplementary material 6 (PDF 376 kb). Comparative physiology of the control strain, S. cerevisiae Lalvin T73 andK. gamospora (CBS10400), Z. kombuchaensis (CBS8849).Yields (ethanol, acetate, biomass, glycerol and pyruvate) were calculated during the exponential phase as a function of glucose consumed. Corresponding consumption and production rates were calculated during the same time intervals on minimal media supplied with 2% glucose in batch fermentations. a Maximum specific growth rate. b Yield coefficients per gram of glucose consumed (g−1); Yse, yield of ethanol; Ysx, yield of biomass; Ysp, yield of pyruvate; Ysac, yield of acetate; Ysg, yield of glycerol. c Specific consumption rate per gram of biomass per hour (mmol g−1 h−1); qGlucose, glucose consumption rate; qO2, oxygen consumption rate. d Specific production rates per hour per gram of biomass (mmol g−1 h−1);qEthanol, ethanol production rate; qCO2, carbon dioxide consumption rate. e Respiratory Quotient ; ratio of carbon dioxide production rate as per oxygen consumption rate

Supplementary material 7 (PDF 58 kb). List of strains used in the study


Supplementary material 8 (PDF 67 kb). Ethanol, glucose, and fructose measurements of the samples taken after 60 h, 150 h, and 300 h. Data was processed using one-way ANOVA (n.s.: not significant; *: P<0.05 (*); **: P<0.01; ***: P<0.001)


Supplementary material 9 (PDF 169 kb). (a) Concentrations of volatiles expressed as 2-octanol using chromatographic peak area ratios at the end of laboratory scale fermentations. (b) Concentrations of volatiles expressed as 2-octanol using chromatographic peak area ratios at the end of pilot scale fermentations

Supplementary material 10 (PDF 87 kb). Sensory descriptors of individual compounds


Supplementary material 11 (PDF 382 kb). Raw data of sensory attributes with statistical data attached. Data was processed using one-way ANOVA (n.s.: not significant; *: P<0.05 (*); **: P<0.01; ***: P<0.001). Groups determined using LSD test


Supplementary material 12 (PDF 63 kb). Raw data from HPLC analysis of basic metabolites from pilot scale fermentation samples fermented with K. gamospora (CBS10400), Z. kombuchaensis (CBS8849) and S. cerevisiae Lalvin T73. Statistical analysis attached, groups determined using LSD test

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dashko, S., Zhou, N., Tinta, T. et al. Use of non-conventional yeast improves the wine aroma profile of Ribolla Gialla. J Ind Microbiol Biotechnol 42, 997–1010 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Non-conventional yeasts
  • Alcoholic fermentation
  • Organoleptic properties
  • Carbon metabolism